Making Truth Safe for Intuitionists

We consider a handful of solutions to the liar paradox which admit a naive truth predicate and employ a non-classical logic, and which include a proposal for classical recapture. Classical recapture is essentially the property that the paradox solvent (in this case, the non-classical interpretation of the connectives) only affects the portion of the language including the truth predicate—so that the connectives can be interpreted classically in sentences in which the truth predicate does not occur. We consider a variation on this theme where the logic to be recaptured is not classical but rather intuitionist logic, and consider the extent to which these handful of solutions to the liar admit of intuitionist recapture by sketching potential ways of altering their various methods for classical recapture to suit an intuitionist framework.

[1]  Stephen Cole Kleene,et al.  On the interpretation of intuitionistic number theory , 1945, Journal of Symbolic Logic.

[2]  Richard Sylvan,et al.  The semantics of entailment—II , 1972, Journal of Philosophical Logic.

[3]  Richard Routley,et al.  The Semantics of First Degree Entailment , 1972 .

[4]  R. Meyer,et al.  The semantics of entailment — III , 1973 .

[5]  Richard Routley,et al.  Classical relevant logics II , 1973 .

[6]  R. Meyer,et al.  Intuitionism, Entailment, Negation , 1973 .

[7]  Nuel D. Belnap,et al.  Entailment : the logic of relevance and necessity , 1975 .

[8]  Saul A. Kripke,et al.  Outline of a Theory of Truth , 1975 .

[9]  J. Dunn,et al.  Curry's paradox , 1979 .

[10]  Robert K. Meyer,et al.  Solution to the P − W problem , 1982, Journal of Symbolic Logic.

[11]  N. Tennant Anti-Realism and Logic: Truth as Eternal , 1987 .

[12]  Kit Fine,et al.  Semantics for quantified relevance logic , 1988, J. Philos. Log..

[13]  Richard Routley,et al.  Relevant Logics and Their Rivals: Part 1. The Basic Philosophical and Semantical Theory , 1988 .

[14]  André Fuhrmann,et al.  Models for relevant modal logics , 1990, Stud Logica.

[15]  Nuel D. Belnap,et al.  Entailment, Vol. II: The Logic of Relevance and Necessity , 1992 .

[16]  Graham Priest,et al.  Simplified semantics for basic relevant logics , 1992, J. Philos. Log..

[17]  Greg Restall A Note on Naive Set Theory in LP , 1992, Notre Dame J. Formal Log..

[18]  Edwin D. Mares,et al.  Classically Complete Modal Relevant Logics , 1993, Math. Log. Q..

[19]  J. Dunn,et al.  Star and Perp: Two Treatments of Negation1 , 1993 .

[20]  Philip Kremer,et al.  Quantifying over propositions in relevance logic: nonaxiomatisability of primary interpretations of ∀p and ∃p , 1993, Journal of Symbolic Logic.

[21]  N. Tennant The Taming of the True , 1997 .

[22]  Greg Restall,et al.  An Introduction to Substructural Logics , 2000 .

[23]  Graham Priest,et al.  Inconsistent models of arithmetic Part II: the general case , 2000, Journal of Symbolic Logic.

[24]  Robert Goldblatt,et al.  An alternative semantics for quantified relevant logic , 2006, Journal of Symbolic Logic.

[25]  Hartry Field Saving Truth From Paradox , 2008 .

[26]  J. Beall Spandrels of Truth , 2009 .

[27]  Francesco Paoli Substructural Logics: A Primer , 2011 .

[28]  David Ripley,et al.  CONSERVATIVELY EXTENDING CLASSICAL LOGIC WITH TRANSPARENT TRUTH , 2012, The Review of Symbolic Logic.

[29]  Zach Weber Transfinite Cardinals in Paraconsistent Set Theory , 2012, Rev. Symb. Log..

[30]  Greg Restall,et al.  Assertion, Denial and Non-classical Theories , 2013, Paraconsistency: Logic and Applications.

[31]  Øystein Linnebo,et al.  THE POTENTIAL HIERARCHY OF SETS , 2013, The Review of Symbolic Logic.

[32]  David Ripley,et al.  Paradoxes and Failures of Cut , 2013 .

[33]  Nick Thomas Expressive Limitations of naïve Set Theory in LP and minimally Inconsistent LP , 2014, Rev. Symb. Log..

[34]  Katalin Bimbó,et al.  Proof Theory: Sequent Calculi and Related Formalisms , 2014 .

[35]  Neil Tennant,et al.  A New Unified Account of Truth and Paradox , 2015 .

[36]  J. Beall Free of Detachment: Logic, Rationality, and Gluts , 2015 .

[37]  G. Robles,et al.  Routley-Meyer Ternary Relational Semantics for Intuitionistic-type Negations , 2018 .