Coupled KdV Equations of Hirota-Satsuma Type

Abstract It is shown that the system of two coupled Korteweg-de Vries equations passes the Painleve; test for integrability in nine distinct cases of its coefficients. The integrability of eight cases is verified by direct construction of Lax pairs, whereas for one case it remains unknown.

[1]  S. Sakovich ON ZERO-CURVATURE REPRESENTATIONS OF EVOLUTION EQUATIONS , 1995 .

[2]  Allan P. Fordy,et al.  On the integrability of a system of coupled KdV equations , 1982 .

[3]  R. S. Ward The Painleve property for the self-dual gauge-field equations , 1984 .

[4]  T. Miwa,et al.  Painlevé test for the self-dual Yang-Mills equation , 1982 .

[5]  R. Hirota,et al.  Soliton solutions of a coupled Korteweg-de Vries equation , 1981 .

[6]  F. Estabrook,et al.  Prolongation structures of nonlinear evolution equations , 1975 .

[7]  A. Jamiołkowski Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .

[8]  B. Dorizzi,et al.  Integrability of the Hirota-Satsuma equations: two tests , 1983 .

[9]  M. Ablowitz,et al.  A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .

[10]  Wen-Xiu Ma,et al.  THE BI-HAMILTONIAN STRUCTURE OF THE PERTURBATION EQUATIONS OF THE KDV HIERARCHY , 1996 .

[11]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[12]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[13]  A. Karasu,et al.  Painlevé classification of coupled Korteweg-de Vries systems , 1997 .

[14]  S. Yu On Integrability of a ( 2 + 1 )-Dimensional Perturbed KdV Equation , 1998 .

[15]  J. Weiss THE PAINLEVE PROPERTY FOR PARTIAL DIFFERENTIAL EQUATIONS. II. BACKLUND TRANSFORMATION, LAX PAIRS, AND THE SCHWARZIAN DERIVATIVE , 1983 .