A self‐consistent Hirshfeld method for the atom in the molecule based on minimization of information loss

Based on the so‐called Hirshfeld atom in the molecule scheme, a new AIM method is presented. The method is similar to the Hirshfeld‐I scheme, with the AIM weight function being constructed by minimizing the information loss upon formation of the molecule, but now requiring explicitly that the promolecular densities integrate to the same number of electrons as the AIM densities. This new weight function leads to a new iterative AIM scheme, and the resulting operative scheme is examined and discussed. The final results indicate that the newly proposed method does not perform as well as the Hirshfeld‐I method.

[1]  Patrick Bultinck,et al.  Critical analysis and extension of the Hirshfeld atoms in molecules. , 2007, The Journal of chemical physics.

[2]  Paul W Ayers,et al.  What is an atom in a molecule? , 2005, The journal of physical chemistry. A.

[3]  Patrick Bultinck,et al.  Electrostatic Potentials from Self-Consistent Hirshfeld Atomic Charges. , 2009, Journal of chemical theory and computation.

[4]  R. Parr,et al.  Information theory, atoms in molecules, and molecular similarity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[5]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[6]  Chérif F Matta,et al.  An experimentalist's reply to "What is an atom in a molecule?". , 2006, The journal of physical chemistry. A.

[7]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. III. Effects of Hybridization on Overlap and Gross AO Populations , 1955 .

[8]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[9]  Roman F. Nalewajski,et al.  Information principles in the theory of electronic structure , 2003 .

[10]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies , 1955 .

[11]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[12]  Ernest R. Davidson,et al.  A test of the Hirshfeld definition of atomic charges and moments , 1992 .

[13]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[14]  R. Wheatley,et al.  Redefining the atom: atomic charge densities produced by an iterative stockholder approach. , 2008, Chemical communications.

[15]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. IV. Bonding and Antibonding in LCAO and Valence‐Bond Theories , 1955 .

[16]  P. Ayers The dependence on and continuity of the energy and other molecular properties with respect to the number of electrons , 2008 .

[17]  P. Ayers,et al.  Computing Fukui functions without differentiating with respect to electron number. I. Fundamentals. , 2007, The Journal of chemical physics.

[18]  Yang,et al.  Degenerate ground states and a fractional number of electrons in density and reduced density matrix functional theory , 2000, Physical review letters.

[19]  J. Perdew,et al.  Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy , 1982 .

[20]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[21]  K. Tiels,et al.  Uniqueness and basis set dependence of iterative Hirshfeld charges , 2007 .

[22]  J. Pierce An introduction to information theory: symbols, signals & noise , 1980 .

[23]  Solomon Kullback,et al.  Information Theory and Statistics , 1960 .

[24]  Renato Pucci,et al.  Electron density, Kohn−Sham frontier orbitals, and Fukui functions , 1984 .

[25]  Chérif F. Matta,et al.  Atomic Charges Are Measurable Quantum Expectation Values: A Rebuttal of Criticisms of QTAIM Charges , 2004 .

[26]  Robert G. Parr,et al.  Density functional approach to the frontier-electron theory of chemical reactivity , 1984 .

[27]  P. Ayers,et al.  Perspective on “Density functional approach to the frontier-electron theory of chemical reactivity” , 2000 .

[28]  Patrick Bultinck,et al.  Critical analysis of the local aromaticity concept in polyaromatic hydrocarbons. , 2007, Faraday discussions.

[29]  R. Wheatley,et al.  Atomic charge densities generated using an iterative stockholder procedure. , 2009, The Journal of chemical physics.

[30]  D. L. Cooper,et al.  Comparison of the Hirshfeld-I and iterated stockholder atoms in molecules schemes. , 2009, Physical chemistry chemical physics : PCCP.

[31]  Information distance analysis of molecular electron densities , 2002 .

[32]  Entropy/information indices of the “stockholder” atoms‐in‐molecules , 2005 .

[33]  Pratim K. Chattaraj,et al.  Chemical reactivity theory : a density functional view , 2009 .

[34]  R. Carbó-Dorca,et al.  Critical thoughts on computing atom condensed Fukui functions. , 2007, The Journal of chemical physics.

[35]  Richard F. W. Bader A quantum theory of molecular structure and its applications , 1991 .