Decoupling uncertainty quantification from robust design optimization

Robust design optimization (RDO) has been eminent in determining the optimal design of real-time complex systems under stochastic environment. Unlike conventional optimization, RDO involves uncertainty quantification which may render the procedure to be computationally intensive, if not prohibitive. In order to deal with such issues, an efficient approximation-based generalized RDO framework has been proposed. Since RDO formulation comprises of statistical terms of the performance functions, the proposed framework deals with approximation of those statistical quantities, rather than the performance functions. Consequently, the proposed framework allows transformation of the RDO problem to an equivalent deterministic one. As a result, unlike traditional surrogate-assisted RDO, the proposed framework yields desirable results in significantly less number of functional evaluations. For performing such response statistical approximation, two adaptive sparse refined Kriging-based computational models have been proposed. However, the generality of the proposed methodology allows any surrogate models to be employed within this framework, provided it is capable of capturing the functional non-linearity. Implementation of the proposed framework in three test examples and two finite element-based practical problems clearly illustrates its potential for further complicated applications.

[1]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[2]  Gerhart I. Schuëller,et al.  Computational methods in optimization considering uncertainties – An overview , 2008 .

[3]  Marco de Angelis,et al.  OpenCossan: an efficient open tool for dealing with epistemic and aleatory uncertainties , 2014 .

[4]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[5]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[6]  Yunkai Gao,et al.  Multiobjective robust design optimization of fatigue life for a truck cab , 2015, Reliab. Eng. Syst. Saf..

[7]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[8]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[9]  Qi Zhou,et al.  A kriging metamodel-assisted robust optimization method based on a reverse model , 2018 .

[10]  Gianluca Iaccarino,et al.  A least-squares approximation of partial differential equations with high-dimensional random inputs , 2009, J. Comput. Phys..

[11]  Bruno Sudret,et al.  Meta-models for structural reliability and uncertainty quantification , 2012, 1203.2062.

[12]  Tapabrata Ray,et al.  A surrogate assisted parallel multiobjective evolutionary algorithm for robust engineering design , 2006 .

[13]  Xiaoping Du,et al.  Analytical robustness assessment for robust design , 2007 .

[14]  Sharif Rahman,et al.  Robust design optimization by polynomial dimensional decomposition , 2012 .

[15]  Xiaoping Du,et al.  The use of metamodeling techniques for optimization under uncertainty , 2001 .

[16]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[17]  Daniele Peri,et al.  Robust optimization for ship conceptual design , 2010 .

[18]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[19]  John E. Mottershead,et al.  A review of robust optimal design and its application in dynamics , 2005 .

[20]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[21]  S. Azarm,et al.  Adaptive gradient-assisted robust design optimization under interval uncertainty , 2013 .

[22]  Giuseppe Marano,et al.  A comparison between different robust optimum design approaches: Application to tuned mass dampers , 2010 .

[23]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[24]  Jianrong Tan,et al.  Robust optimization of structural dynamic characteristics based on adaptive Kriging model and CNSGA , 2015 .

[25]  S. Chakraborty,et al.  Sensitivity importance‐based robust optimization of structures with incomplete probabilistic information , 2012 .

[26]  Carlos A. Coello Coello,et al.  Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and epsilon-Dominance , 2005, EMO.

[27]  Shigeru Obayashi,et al.  Practical Implementation of Robust Design Assisted by Response Surface Approximation and Visual Data-Mining , 2009 .

[28]  Rommel G. Regis,et al.  Evolutionary Programming for High-Dimensional Constrained Expensive Black-Box Optimization Using Radial Basis Functions , 2014, IEEE Transactions on Evolutionary Computation.

[29]  Sondipon Adhikari,et al.  Polynomial Chaos Expansion and Steady-State Response of a Class of Random Dynamical Systems , 2015 .

[30]  H. Rabitz,et al.  High Dimensional Model Representations , 2001 .

[31]  R. Tibshirani,et al.  Improvements on Cross-Validation: The 632+ Bootstrap Method , 1997 .

[32]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[33]  J. Arora,et al.  Performance of some SQP algorithms on structural design problems , 1986 .

[34]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[35]  Wei Chen,et al.  Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design , 2000 .

[36]  J. Tropp,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.

[37]  Sondipon Adhikari,et al.  A Surrogate Based Multi-fidelity Approach for Robust Design Optimization , 2017 .

[38]  Subrata Chakraborty,et al.  Robust optimum design of base isolation system in seismic vibration control of structures under random system parameters , 2015 .

[39]  Manolis Papadrakakis,et al.  Reliability based robust design optimization of steel structures , 2007 .

[40]  V. Dubourg Adaptive surrogate models for reliability analysis and reliability-based design optimization , 2011 .

[41]  B. Sudret,et al.  Metamodel-based importance sampling for structural reliability analysis , 2011, 1105.0562.

[42]  Jeong Sam Han,et al.  Robust optimization using a gradient index: MEMS applications , 2004 .

[43]  T. Simpson,et al.  Comparative studies of metamodeling techniques under multiple modeling criteria , 2000 .

[44]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[45]  Wei Chen,et al.  Quality utility : a Compromise Programming approach to robust design , 1999 .

[46]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[47]  Tanmoy Chatterjee,et al.  A bi-level approximation tool for the computation of FRFs in stochastic dynamic systems , 2016 .

[48]  J. Friedman Multivariate adaptive regression splines , 1990 .

[49]  T. W. Layne,et al.  A Comparison of Approximation Modeling Techniques: Polynomial Versus Interpolating Models , 1998 .

[50]  Joe Wiart,et al.  A new surrogate modeling technique combining Kriging and polynomial chaos expansions - Application to uncertainty analysis in computational dosimetry , 2015, J. Comput. Phys..

[51]  Tanmoy Chatterjee,et al.  Robust Design Optimization for Crashworthiness of Vehicle Side Impact , 2017 .

[52]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[53]  Peter J. Fleming,et al.  Multiobjective genetic algorithms made easy: selection sharing and mating restriction , 1995 .

[54]  T. Simpson,et al.  Comparative studies of metamodelling techniques under multiple modelling criteria , 2001 .

[55]  Achille Messac,et al.  Physical programming - Effective optimization for computational design , 1996 .

[56]  Jian Deng,et al.  Structural reliability analysis for implicit performance function using radial basis function network , 2006 .

[57]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[58]  Tanmoy Chatterjee,et al.  Adaptive Bilevel Approximation Technique for Multiobjective Evolutionary Optimization , 2017, J. Comput. Civ. Eng..

[59]  Tomáš Mareš,et al.  Artificial neural networks in the calibration of nonlinear mechanical models , 2016, Adv. Eng. Softw..

[60]  Genichi Taguchi,et al.  Quality Engineering through Design Optimization , 1989 .

[61]  Slawomir Koziel,et al.  Multi-Fidelity Robust Aerodynamic Design Optimization under Mixed Uncertainty , 2015 .

[62]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[63]  Wei Chen,et al.  Exploration of the effectiveness of physical programming in robust design , 2000 .

[64]  M. R. Osborne,et al.  A new approach to variable selection in least squares problems , 2000 .

[65]  Souvik Chakraborty,et al.  A semi-analytical framework for structural reliability analysis , 2015 .

[66]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[67]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[68]  Søren Nymand Lophaven,et al.  DACE - A Matlab Kriging Toolbox , 2002 .

[69]  C. Prieur,et al.  Generalized Hoeffding-Sobol Decomposition for Dependent Variables -Application to Sensitivity Analysis , 2011, 1112.1788.

[70]  Tanmoy Chatterjee,et al.  A Critical Review of Surrogate Assisted Robust Design Optimization , 2019 .

[71]  Tanmoy Chatterjee,et al.  An efficient sparse Bayesian learning framework for stochastic response analysis , 2017 .

[72]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[73]  Kwon-Hee Lee,et al.  Robust optimization considering tolerances of design variables , 2001 .

[74]  Wei Chen,et al.  An integrated framework for optimization under uncertainty using inverse Reliability strategy , 2004 .

[75]  Nicolas Gayton,et al.  AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation , 2011 .

[76]  Farrokh Mistree,et al.  A procedure for robust design: Minimizing variations caused by noise factors and control factors , 1996 .