Isolation and Characterization of Three Membrane-Bound Chlorophyll-Protein Complexes from Four Dinoflagellate Species

Employing discontinuous sucrose density gradient centrifugation of n-dodecyl $\beta$ -d-maltoside-solubilized thylakoid membranes, three chlorophyll (Chl)-protein complexes containing Chl a, Chl c $\_2$ and peridinin in different proportions, were isolated from the dinoflagellates Symbiodinium microadriaticum, S. kawagutii, S. pilosum and Heterocapsa pygmaea. In S. microadriaticum, the first complex, containing 13% of the total cellular Chl a, and minor quantities of Chl c $\_2$ and peridinin, is associated with polypeptides with apparent molecular mass (M $\_r$ ) of 8-9 kDa, and demonstrated inefficient energy transfer from the accessory pigments to Chl a. The second complex contains Chl a, Chl c $\_2$ and peridinin in a molar ratio of 1:1:2, associated with two apoproteins of M $\_r$ 19-20 kDa, and comprises 45%, 75% and 70%, respectively, of the cellular Chl a, Chl c $\_2$ and peridinin. The efficient energy transfer from Chl c $\_2$ and peridinin to Chl a in this complex is supportive of a light-harvesting function. This Chl a-c $\_2$ -peridinin-protein complex represents the major light-harvesting complex in dinoflagellates. The third complex obtained contains 12% of the cellular Chl a, and appears to be the core of photosystem I, associated with a light-harvesting complex. This complex is spectroscopically similar to analogous preparations from different taxonomic groups, but demonstrates a unique apoprotein composition. Antibodies against the water-soluble peridinin-Chl a-protein (sPCP) light-harvesting complexes failed to cross-react with any of the thylakoid-associated complexes, as did antibodies against Chl a-c-fucoxanthin apoprotein (from diatoms). Antibodies against the P $_{700}$ apoprotein of plants did not cross-react with the photosystem I complex. Similar results were observed in the other dinoflagellates.

[1]  R. Iglesias-Prieto,et al.  Apoprotein composition and spectroscopic characterization of the water-soluble peridinin—chlorophyll a—proteins from three symbiotic dinoflagellates , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[2]  J. Biggins,et al.  Thylakoid Organization in the Chromophyte Alga Ochromonas danica: Isolation and Characterization of a New Pigment-Protein Complex. , 1991, Plant physiology.

[3]  M. Sogin,et al.  A NEW PHYLOGENY FOR CHROMOPHYTE ALGAE USING 16S‐LIKE RRNA SEQUENCES FROM MALLOMONAS PAPILLOSA (SYNUROPHYCEAE) AND TRIBONEMA AEQUALE (XANTHOPHYCEAE) 1 , 1991 .

[4]  J. Barta,et al.  Evolutionary relationships of avian Eimeria species among other Apicomplexan protozoa: monophyly of the apicomplexa is supported. , 1991, Molecular biology and evolution.

[5]  L. Caron,et al.  Light‐harvesting complexes of brown algae Biochemical characterization and immunological relationships , 1991, FEBS letters.

[6]  M. Sogin,et al.  Ribosomal RNA sequences of Sarcocystis muris, Theileria annulata and Crypthecodinium cohnii reveal evolutionary relationships among apicomplexans, dinoflagellates, and ciliates. , 1991, Molecular and biochemical parasitology.

[7]  G. Smith,et al.  CHARACTERIZATION OF PHOTOSYSTEM I‐ASSOCIATED POLYPEPTIDES FROM THE CHLOROPHYLL b‐RICH ALGA TETRASELMIS SPP. (PLEURASTROPHYCEAE) AND OTHER CHLOROPHYTE ALGAE 1 , 1991 .

[8]  L. Rensing,et al.  Characterization of the Photosynthetic Apparatus from the Marine Dinoflagellate Gonyaulax polyedra , 1990 .

[9]  B. Prézelin,et al.  In situ photosynthetic physiology and chlorophyll-protein biochemistry of two dinoflagellate blooms , 1990 .

[10]  B. Prézelin,et al.  An analysis of the light-harvesting peridinin—chlorophyll a-proteins from dinoflagellates by immunoblotting techniques , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[11]  I. Yamazaki,et al.  Characteristic fluorescence components in photosynthetic pigment system of a marine dinoflagellate, Protogonyaulax tamarensis, and excitation energy flow among them. Studies by means of steady-state and time-resolved fluorescence spectroscopy , 1990 .

[12]  A. Johnson,et al.  Phylogenetic relationships of Cryptosporidium determined by ribosomal RNA sequence comparison. , 1990, International journal for parasitology.

[13]  M. Mimuro,et al.  Spatial arrangement of pigments and their interaction in the fucoxanthin-chlorophyll ac protein assembly (FCPA) isolated from the brown alga Dictyota dichotoma. Analysis by means of polarized spectroscopy , 1990 .

[14]  B. Prézelin,et al.  Light Regulation of Peridinin-Chlorophyll a-Protein (PCP) Complexes in the Dinoflagellate, Glenodinium sp. : Use of Anti-Pcp Antibodies to Detect Pcp Gene Products in Cells Grown in Different Light Conditions. , 1988, Plant physiology.

[15]  R. Nechushtai,et al.  Biochemical composition and structure of photosynthetic pigmentproteins from higher plants , 1987 .

[16]  R. S. Alberte,et al.  PHYLOGENETIC DISTRIBUTION OF THE MAJOR DIATOM LIGHT‐HARVESTING PIGMENT‐PROTEIN DETERMINED BY IMMUNOLOGICAL METHODS 1 , 1987 .

[17]  R. Trench,et al.  SYMBIODINIUM MICROADRIATICUM FREUDENTHAL, S. GOREAUII SP. NOV., S. KAWAGUTII SP. NOV. AND S. PILOSUM SP. NOV.: GYMNODINIOID DINOFLAGELLATE SYMBIONTS OF MARINE INVERTEBRATES 1 , 1987 .

[18]  B. Prézelin,et al.  Chlorophyll-Protein Complexes from the Red-Tide Dinoflagellate, Gonyaulax polyedra Stein : Isolation, Characterization, and the Effect of Growth Irradiance on Chlorophyll Distribution. , 1987, Plant physiology.

[19]  R. Blank Cell architecture of the dinoflagellate Symbiodinium sp. inhabiting the Hawaiian stony coral Montipora verrucosa , 1987 .

[20]  T. G. Owens,et al.  Light-Harvesting Function in the Diatom Phaeodactylum tricornutum: I. Isolation and Characterization of Pigment-Protein Complexes. , 1986, Plant physiology.

[21]  I. Ohad,et al.  Thylakoid polypeptide composition and light-independent phosphorylation of the chlorophyll a,b-protein in Prochloron, a prokaryote exhibiting oxygenic photosynthesis , 1984 .

[22]  R. S. Alberte,et al.  A diatom light-harvesting pigment-protein complex : purification and characterization. , 1984, Plant physiology.

[23]  B. Prézelin,et al.  Mechanisms of photoadaptation in three strains of the symbiotic dinoflagellate Symbiodinium microadriaticum , 1983 .

[24]  E. Vierling,et al.  P(700) Chlorophyll a-Protein : Purification, Characterization, and Antibody Preparation. , 1983, Plant physiology.

[25]  H. Lyman,et al.  Light-harvesting systems of brown algae and diatoms. Isolation and characterization of chlorophyll a/c and chlorophyll a/fucoxanthin pigment-protein complexes. , 1981, Biochimica et biophysica acta.

[26]  B. Prézelin,et al.  A chlorophyll c‐containing pigment—protein complex from the marine dinoflagellate, Glenodinium sp , 1980 .

[27]  J. Barrett,et al.  The P-700-chlorophyl alpha-protein complex and two major light-harvesting complexes of Acrocarpia paniculata and other brown seaweeds. , 1980, Biochimica et biophysica acta.

[28]  B. Prézelin,et al.  CHLOROPHYLL a FLUORESCENCE OF GONYAULAX POLYEDRA GROWN ON A LIGHT‐DARK CYCLE AND AFTER TRANSFER TO CONSTANT LIGHT , 1979, Photochemistry and photobiology.

[29]  J. Markwell,et al.  Higher plant chloroplasts: Evidence that all the chlorophyll exists as chlorophyll-protein complexes. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Markwell,et al.  Chlorophyll-protein complexes from higher plants: a procedure for improved stability and fractionation. , 1978, Archives of biochemistry and biophysics.

[31]  B. Prézelin,et al.  Photosynthetic characteristics and organization of chlorophyll in marine dinoflagellates. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[32]  B. Prézelin,et al.  Molecular topology of the photosynthetic light-harvesting pigment complex, peridinin-chlorophyll a-protein, from marine dinoflagellates. , 1976, Biochemistry.

[33]  G. Somers,et al.  Peridinin-Chlorophyll a Proteins of the Dinoflagellate Amphidinium carterae (Plymouth 450). , 1976, Plant physiology.

[34]  R. S. Alberte,et al.  The P700-chlorophyll a-protein. Isolation and some characteristics of the complex in higher plants. , 1974, Archives of biochemistry and biophysics.

[35]  Warren L. Butler,et al.  AN ANALYSIS OF FOURTH DERIVATIVE SPECTRA , 1970 .

[36]  H. Scheller,et al.  Structural and functional analysis of the reducing side of photosystem I , 1992 .

[37]  B. Prézelin,et al.  Chromatic light effects and physiological modeling of absorption properties of Heterocapsa pygmaea (=Glenodinium sp.). , 1990 .

[38]  J. Barrett,et al.  Light-harvesting processes in algae , 1983 .

[39]  P. Falkowski,et al.  Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat , 1981, Nature.

[40]  G. F. Humphrey,et al.  New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton , 1975 .