The probabilistic seismic hazard assessment of Germany—version 2016, considering the range of epistemic uncertainties and aleatory variability

The basic seismic load parameters for the upcoming national design regulation for DIN EN 1998-1/NA result from the reassessment of the seismic hazard supported by the German Institution for Civil Engineering (DIBt). This 2016 version of the national seismic hazard assessment for Germany is based on a comprehensive involvement of all accessible uncertainties in models and parameters and includes the provision of a rational framework for integrating ranges of epistemic uncertainties and aleatory variabilities in a comprehensive and transparent way. The developed seismic hazard model incorporates significant improvements over previous versions. It is based on updated and extended databases, it includes robust methods to evolve sets of models representing epistemic uncertainties, and a selection of the latest generation of ground motion prediction equations. The new earthquake model is presented here, which consists of a logic tree with 4040 end branches and essential innovations employed for a realistic approach. The output specifications were designed according to the user oriented needs as suggested by two review teams supervising the entire project. Seismic load parameters, for rock conditions of $$v_{S30}$$vS30 = 800 m/s, are calculated for three hazard levels (10, 5 and 2% probability of occurrence or exceedance within 50 years) and delivered in the form of uniform hazard spectra, within the spectral period range 0.02–3 s, and seismic hazard maps for peak ground acceleration, spectral response accelerations and for macroseismic intensities. Results are supplied as the mean, the median and the 84th percentile. A broad analysis of resulting uncertainties of calculated seismic load parameters is included. The stability of the hazard maps with respect to previous versions and the cross-border comparison is emphasized.

[1]  P. Bankwitz,et al.  Structural characteristics of epicentral areas in Central Europe: study case Cheb Basin (Czech Republic) , 2003 .

[2]  Dietrich Stromeyer,et al.  The unified catalogue of earthquakes in central, northern, and northwestern Europe (CENEC)—updated and expanded to the last millennium , 2009 .

[3]  M. Everaerts,et al.  Relevance of active faulting and seismicity studies to assessments of long-term earthquake activity and maximum magnitude in intraplate northwest Europe, between the Lower Rhine Embayment and the North Sea , 2007 .

[4]  D. Albarello,et al.  Seismic hazard assessment for Iceland in terms of macroseismic intensity using a site approach , 2016, Bulletin of Earthquake Engineering.

[5]  Rodolfo Puglia,et al.  Erratum to: Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5 %-damped PSA at spectral periods up to 3.0 s using the RESORCE dataset , 2014, Bulletin of Earthquake Engineering.

[6]  Stefan M. Schmid,et al.  Latest Pliocene to recent thick-skinned tectonics at the Upper Rhine Graben – Jura Mountains junction , 2007 .

[7]  Capturing the Uncertainty of Seismic Activity Rates in Probabilistic Seismic‐Hazard Assessments , 2015 .

[8]  Gottfried Grünthal,et al.  The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium , 2012, Journal of Seismology.

[9]  Dino Bindi,et al.  Partially non-ergodic region specific GMPE for Europe and Middle-East , 2016, Bulletin of Earthquake Engineering.

[10]  N. Abrahamson,et al.  On the Use of Logic Trees for Ground-Motion Prediction Equations in Seismic-Hazard Analysis , 2005 .

[11]  Gregory C. Beroza,et al.  Variability in earthquake stress drop and apparent stress , 2011 .

[12]  S. Stein,et al.  A new paradigm for large earthquakes in stable continental plate interiors , 2016 .

[13]  H. Illies Mechanism of graben formation , 1981 .

[14]  G. Grünthal,et al.  Application-driven ground motion prediction equation for seismic hazard assessments in non-cratonic moderate-seismicity areas , 2017, Journal of Seismology.

[15]  G. Grünthal,et al.  Probabilistic Seismic Hazard Assessment (Horizontal PGA) for Fennoscandia Using the Logic Tree Approach for Regionalization and Nonregionalization Models , 2001 .

[16]  F. Scherbaum,et al.  On the Conversion of Source-to-Site Distance Measures for Extended Earthquake Source Models , 2004 .

[17]  Ezio Faccioli,et al.  Updated predictive equations for broadband (0.01–10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records , 2015, Bulletin of Earthquake Engineering.

[18]  Julian J. Bommer,et al.  Probability and Uncertainty in Seismic Hazard Analysis , 2005 .

[19]  S. T. Algermissen,et al.  A probabilistic estimate of maximum acceleration in rock in the contiguous United States , 1976 .

[20]  P. A. Ziegler,et al.  Cenozoic uplift of Variscan Massifs in the Alpine foreland : timing and controlling mechanisms , 2007 .

[21]  T. Allen,et al.  Canada's 6 Generation Seismic Hazard Model, as Prepared for the 2020 National Building Code of Canada , 2015 .

[22]  Domenico Giardini,et al.  The ESC-SESAME Unified Hazard Model for the European-Mediterranean region , 2003 .

[23]  Frank Scherbaum,et al.  On the Discrepancy of Recent European Ground-Motion Observations and Predictions from Empirical Models: Analysis of KiK-net Accelerometric Data and Point-Sources Stochastic Simulations , 2008 .

[24]  C. Beauval,et al.  The role of seismicity models in probabilistic seismic hazard estimation: comparison of a zoning and a smoothing approach , 2006 .

[25]  G. Grünthal,et al.  SENSITIVITY OF PARAMETERS FOR PROBABILISTIC SEISMIC HAZARD ANALYSIS USING A LOGIC TREE APPROACH , 2001 .

[26]  Jonathan P. Stewart,et al.  NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes , 2014 .

[27]  Jorge M. Gaspar-Escribano,et al.  Uncertainty assessment for the seismic hazard map of Spain , 2015 .

[28]  J. Winsemann,et al.  Soft-sediment deformation structures in NW Germany caused by Late Pleistocene seismicity , 2013, International Journal of Earth Sciences.

[29]  J. Douglas,et al.  Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe , 2012, Journal of Seismology.

[30]  G. Grünthal,et al.  Probabilistic seismic hazard assessment (horizontal PGA) for Sweden, Finland and Denmark using different logic tree approaches , 2000 .

[31]  A. Frankel Mapping Seismic Hazard in the Central and Eastern United States , 1995 .

[32]  Domenico Giardini,et al.  Evidence for Holocene palaeoseismicity along the Basel—Reinach active normal fault (Switzerland): a seismic source for the 1356 earthquake in the Upper Rhine graben , 2005 .

[33]  Luis Esteva,et al.  SEISMIC RISK AND SEISMIC DESIGN DECISIONS. , 1970 .

[34]  G. Woo Kernel estimation methods for seismic hazard area source modeling , 1996, Bulletin of the Seismological Society of America.

[35]  S. Schmid,et al.  The arc of the western Alps in the light of geophysical data on deep crustal structure , 2000 .

[36]  F. Visini,et al.  Seismic hazard in central Italy and the 2016 Amatrice earthquake , 2016 .

[37]  G. Grünthal,et al.  The data sets of the earthquake model for the probabilistic seismic hazard assessment of Germany, version 2016 - Report on supplementary material for the respective publication , 2017 .

[38]  S. Cloetingh,et al.  Surveys on environmental tectonics , 2005 .

[39]  E. Faccioli,et al.  Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records , 2008 .

[40]  F. Scherbaum,et al.  Stochastic source, path and site attenuation parameters and associated variabilities for shallow crustal European earthquakes , 2017, Bulletin of Earthquake Engineering.

[41]  G. Grünthal,et al.  The recent crustal stress field in central Europe: Trajectories and finite element modeling , 1992 .

[42]  Thomas Ulrich,et al.  Comparison of the Ranges of Uncertainty Captured in Different Seismic-Hazard Studies , 2014 .

[43]  G. Schneider,et al.  Zur Neotektonik der Zollernalb:Der Hohenzollerngraben und die Albstadt-Erdbeben , 2002 .

[44]  K. Coppersmith,et al.  Methodology and main results of seismic source characterization for the PEGASOS Project, Switzerland , 2009 .

[45]  D. García-Castellanos,et al.  Lithospheric memory, state of stress and rheology: neotectonic controls on Europe's intraplate continental topography. , 2005 .

[46]  Developing Seismogenic Source Models Based on Geologic Fault Data , 2011 .

[47]  Benjamin Edwards,et al.  Region‐Specific Assessment, Adjustment, and Weighting of Ground‐Motion Prediction Models: Application to the 2015 Swiss Seismic‐Hazard Maps , 2016 .

[48]  Ryan T. Coppersmith,et al.  A SSHAC Level 3 Probabilistic Seismic Hazard Analysis for a New-Build Nuclear Site in South Africa , 2015 .

[49]  Carl Allin Cornell,et al.  Probabilistic Analysis of Damage to Structures under Seismic Loads , 1971 .

[50]  D. Weichert,et al.  Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes , 1980 .

[51]  P. R. Cobbold,et al.  Lateral extrusion in the eastern Alps, Part 1: Boundary conditions and experiments scaled for gravity , 1991 .

[52]  K. Decker,et al.  Active tectonics and Quaternary basin formation along the Vienna Basin Transform fault , 2005 .

[53]  P. A. Ziegler,et al.  Crustal evolution of Western and Central Europe , 2006, Geological Society, London, Memoirs.

[54]  W. Sissingh Syn-kinematic palaeogeographic evolution of the West European Platform: correlation with Alpine plate collision and foreland deformation , 2006, Netherlands Journal of Geosciences.

[55]  F. Wenzel,et al.  Spatial variations of earthquake occurrence and coseismic deformation in the Upper Rhine Graben, Central Europe , 2015 .

[56]  F. Cotton,et al.  Regional Stochastic GMPEs in Low‐Seismicity Areas: Scaling and Aleatory Variability Analysis—Application to the French AlpsRegional Stochastic GMPEs in Low‐Seismicity Areas: Scaling and Aleatory Variability Analysis , 2015 .

[57]  D. Fäh,et al.  A Stochastic Ground‐Motion Model for Switzerland , 2013 .

[58]  G. Grünthal,et al.  Seismic risk mapping for Germany , 2006 .

[59]  J. Illies,et al.  The Rhine graben rift system-plate tectonics and transform faulting , 1972 .

[60]  S. Harmsen,et al.  Deaggregation of probabilistic ground motions in the central and eastern United States , 1999 .

[61]  W. A. Lenhardt,et al.  Abschätzung der Erdbebengefährdung für die D‐A‐CH‐Staaten ‐ Deutschland, Österreich, Schweiz , 1998 .

[62]  D. Albarello,et al.  Application of SASHA to seismic hazard assessment for Portugal mainland , 2016, Bulletin of Earthquake Engineering.

[63]  F. Cotton,et al.  On the Testing of Ground‐Motion Prediction Equations against Small‐Magnitude Data , 2012, 1212.2981.

[64]  Mathieu Causse,et al.  What is Sigma of the Stress Drop , 2013 .

[65]  Pierre-Yves Bard,et al.  Can Strong-Motion Observations be Used to Constrain Probabilistic Seismic-Hazard Estimates? , 2008 .

[66]  D. Gautier Carboniferous-Rotliegend total petroleum system; description and assessment results summary , 2003 .

[67]  R. Puglia,et al.  Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5 %-damped PSA at spectral periods up to 3.0 s using the RESORCE dataset , 2013, Bulletin of Earthquake Engineering.

[68]  F. Cotton,et al.  Towards fully data driven ground-motion prediction models for Europe , 2014, Bulletin of Earthquake Engineering.

[69]  D. Bindi,et al.  Location and magnitudes of earthquakes in Central Asia from seismic intensity data: model calibration and validation , 2013 .

[70]  S. Bonnet,et al.  Separation of rifting and lithospheric folding signatures in the NW-Alpine foreland , 2007 .

[71]  G. Grünthal The history of historical earthquake research in Germany , 2004 .

[72]  J. Douglas Zechar,et al.  Simple smoothed seismicity earthquake forecasts for Italy , 2010 .

[73]  Ronald Arvidsson,et al.  Earthquake model for the European-Mediterranean Region for the purpose of GEM1 , 2010 .

[74]  O. Pfiffner,et al.  Neotectonic faulting, uplift and seismicity in the central and western Swiss Alps , 2008 .

[75]  Dietrich Stromeyer,et al.  Harmonization check of Mw within the central, northern, and northwestern European earthquake catalogue (CENEC) , 2009 .

[76]  Gottfried Gruenthal,et al.  Die neue Generation der probabilistischen seismischen Gefährdungseinschätzung der Bundesrepublik Deutschland : Version 2007 mit Anwendung für die Erdbeben-Lastfälle der DIN 19700:2004-07 „Stauanlagen” , 2009 .

[77]  F. Knight The economic nature of the firm: From Risk, Uncertainty, and Profit , 2009 .

[78]  Oliver Heidbach,et al.  World Stress Map Database Release 2016 , 2016 .

[79]  W. Silva,et al.  NGA-West2 Database , 2014 .

[80]  C. Cornell,et al.  Disaggregation of seismic hazard , 1999 .

[81]  C. Thierry,et al.  Development of seismic hazard maps for Belgium , 2014 .

[82]  R. Mcguire Probabilistic seismic hazard analysis and design earthquakes: Closing the loop , 1995, Bulletin of the Seismological Society of America.

[83]  F. Scherbaum,et al.  On the Use of Response Spectral-Reference Data for the Selection and Ranking of Ground-Motion Models for Seismic-Hazard Analysis in Regions of Moderate Seismicity: The Case of Rock Motion , 2004 .

[84]  Jonathan P. Stewart,et al.  Comparison of NGA-West2 GMPEs , 2014 .

[85]  G. Grunthal,et al.  Seismic hazard assessment for Central, North and Northwest Europe: GSHAP Region 3 , 1999 .

[86]  G. Grünthal,et al.  Seismic source zone characterization for the seismic hazard assessment project PEGASOS by the Expert Group 2 (EG1b) , 2009 .

[87]  L. Ahorner,et al.  Seismic hazard assessment for the Lower Rhine Embayment before and after the 1992 Roermond earthquake , 1996 .

[88]  A. Griewank,et al.  Derivative‐Based Global Sensitivity Analysis: Upper Bounding of Sensitivities in Seismic‐Hazard Assessment Using Automatic Differentiation , 2017 .

[89]  H. Thybo Geophysical characteristics of the Tornquist Fan area, northwest Trans-European Suture Zone: indication of late Carboniferous to early Permian dextral transtension , 1997, Geological Magazine.

[90]  H. Bungum,et al.  Probabilistic seismic hazard analysis: zoning free versus zoning methodology , 2001 .

[91]  B. Gutenberg,et al.  Frequency of Earthquakes in California , 1944, Nature.

[92]  G.,et al.  The Recent Crustal Stress Field in Central Europe ' Trajectories and Finite Element Modeling , 2007 .

[93]  Steven G. Wesnousky,et al.  Scaling differences between large interplate and intraplate earthquakes , 1986 .

[94]  Danijel Schorlemmer,et al.  The Statistical Power of Testing Probabilistic Seismic-Hazard Assessments , 2014 .

[95]  C. Allin Cornell,et al.  The Case for Using Mean Seismic Hazard , 2005 .

[96]  Carlo Meletti,et al.  The 2013 European Seismic Hazard Model: key components and results , 2015, Bulletin of Earthquake Engineering.

[97]  E. Smith,et al.  Adaptive Kernel Estimation and Continuous Probability Representation of Historical Earthquake Catalogs , 2002 .

[98]  A. C. Miller,et al.  Discrete Approximations of Probability Distributions , 1983 .

[99]  Julian J. Bommer,et al.  The Challenge of Defining Upper Bounds on Earthquake Ground Motions , 2004 .

[100]  Gottfried Grünthal,et al.  Induced seismicity related to geothermal projects versus natural tectonic earthquakes and other types of induced seismic events in Central Europe , 2014 .

[101]  Julian J. Bommer,et al.  The Use and Misuse of Logic Trees in Probabilistic Seismic Hazard Analysis , 2008 .

[102]  Julian J. Bommer,et al.  Criteria for Selecting and Adjusting Ground-Motion Models for Specific Target Regions: Application to Central Europe and Rock Sites , 2006 .

[103]  S. Stein,et al.  Challenges in assessing seismic hazard in intraplate Europe , 2014, Special Publications.

[104]  K. Bräuer,et al.  Monthly monitoring of gas and isotope compositions in the free gas phase at degassing locations close to the Nový Kostel focal zone in the western Eger Rift¸ Czech Republic , 2011 .

[105]  S. Drouet Regional Stochastic GMPEs in Low-Seismicity Areas: Scaling and Aleatory Variability Analysis—Application to the French Alps , 2015 .

[106]  J. Bommer,et al.  Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East , 2014, Bulletin of Earthquake Engineering.

[107]  C. Cornell Engineering seismic risk analysis , 1968 .

[108]  G. Grünthal,et al.  Building-Code Related Seismic Hazard Analyses of Germany and their Relation to SHARE , 2014 .

[109]  Dietrich Stromeyer,et al.  Attenuation Relationship of Macroseismic Intensities in Central Europe , 2009 .

[110]  G. Grünthal,et al.  Seismicity and geological features of the eastern part of the West European platform , 1985 .

[111]  Gottfried Grünthal,et al.  A Statistical Method for Estimating Catalog Completeness Applicable to Long-Term Nonstationary Seismicity Data , 2012 .

[112]  S. Schmid,et al.  Fault reactivation in brittle¿viscous wrench systems¿dynamically scaled analogue models and application to the Rhine¿Bresse transfer zone , 2005 .

[113]  S. Akkar,et al.  Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East , 2014, Bulletin of Earthquake Engineering.

[114]  Benjamin Edwards,et al.  A Stochastic Earthquake Ground‐Motion Prediction Model for the United Kingdom , 2013 .

[115]  B. Merz,et al.  Comparative Risk Assessments for the City of Cologne – Storms, Floods, Earthquakes , 2006 .

[116]  Kaye M. Shedlock,et al.  The GSHAP Global Seismic Hazard Map , 1999 .

[117]  Carlo Meletti,et al.  Seismic Hazard Assessment in Terms of Macroseismic Intensity in Italy: A Critical Analysis from the Comparison of Different Computational Procedures , 2010 .

[118]  Kris Vanneste,et al.  A Model of Composite Seismic Sources for the Lower Rhine Graben, Northwest Europe , 2013 .

[119]  T. Duman,et al.  A probabilistic seismic hazard assessment for the Turkish territory—part I: the area source model , 2018, Bulletin of Earthquake Engineering.