Modeling and adaptive control of a quadrotor

In this paper, we propose two variants of adaptive state space controllers for attitude stabilization and self-tuning of a four-rotor aerial robot, a quadrotor. First of all, the use of a Model Identification Adaptive Controller (MIAC) is proposed in terms of combining a recursive least-squares estimator with exponential forgetting with an integral discrete-time state space controller. Furthermore, a continuous-time Model Reference Adaptive Control (MRAC) scheme based on Lyapunov theory is applied to the simplified dynamics of a quadrotor, which guarantees global asymptotic stability for at least linear overall systems. The effectiveness of the suggested adaptive methods is demonstrated in simulations with a quaternion-based nonlinear dynamic model of a quadrotor derived in this work. The results are compared to a designed nonadaptive integral state space controller.

[1]  Holger Voos Nonlinear state-dependent Riccati equation control of a quadrotor UAV , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[2]  H. Jin Kim,et al.  Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter , 2009 .

[3]  Roland Siegwart,et al.  Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotor , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[4]  A. Tayebi,et al.  Attitude stabilization of a four-rotor aerial robot , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[5]  Petros A. Ioannou,et al.  Robust Adaptive Control , 2012 .

[6]  T. Madani,et al.  Sliding Mode Observer and Backstepping Control for a Quadrotor Unmanned Aerial Vehicles , 2007, 2007 American Control Conference.

[7]  Claire J. Tomlin,et al.  Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment , 2007 .

[8]  Jan Wendel Integrierte Navigationssysteme: Sensordatenfusion, GPS und Inertiale Navigation , 2007 .

[9]  Holger Voos Entwurf eines Flugreglers für ein vierrotoriges unbemanntes FluggerätControl Systems Design for a Quadrotor UAV , 2009, Autom..

[10]  Abdelhamid Tayebi,et al.  Attitude stabilization of a VTOL quadrotor aircraft , 2006, IEEE Transactions on Control Systems Technology.

[11]  Boubaker Daachi,et al.  ROBUST FEEDBACK LINEARIZATION AND GH∞ CONTROLLER FOR A QUADROTOR UNMANNED AERIAL VEHICLE , 2005 .

[12]  Jun Li,et al.  Dynamic analysis and PID control for a quadrotor , 2011, 2011 IEEE International Conference on Mechatronics and Automation.

[13]  P.J. Alsina,et al.  Dynamic Modelling of a Quadrotor Aerial Vehicle with Nonlinear Inputs , 2008, 2008 IEEE Latin American Robotic Symposium.

[14]  G. Raffo,et al.  An integral predictive / nonlinear H ∞ control structure for a quadrotor helicopter , 2009 .

[15]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[16]  Roland Siegwart,et al.  Design and control of an indoor micro quadrotor , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[17]  Samir Bouabdallah,et al.  Design and control of quadrotors with application to autonomous flying , 2007 .