Mechanical Properties of Inorganic Nanostructures

[1]  M. Rayson,et al.  Mechanical properties of nanosheets and nanotubes investigated using a new geometry independent volume definition , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  M. Naraghi,et al.  Multiscale Experimental Mechanics of Hierarchical Carbon‐Based Materials , 2012, Advanced materials.

[3]  J. Chaste,et al.  A nanomechanical mass sensor with yoctogram resolution. , 2012, Nature nanotechnology.

[4]  Andres Castellanos-Gomez,et al.  Elastic Properties of Freely Suspended MoS2 Nanosheets , 2012, Advanced materials.

[5]  R. Lakes,et al.  Poisson's ratio and modern materials , 2011, Nature Materials.

[6]  D. Bowler,et al.  methods in electronic structure calculations , 2011, Reports on progress in physics. Physical Society.

[7]  Michael Stingl,et al.  Finding Auxetic Frameworks in Periodic Tessellations , 2011, Advanced materials.

[8]  W. Cai,et al.  Size and temperature effects on the fracture mechanisms of silicon nanowires: Molecular dynamics simulations , 2010 .

[9]  G. Seifert,et al.  Helical nanotube structures of MoS2 with intrinsic twisting: an objective molecular dynamics study. , 2010, Physical review letters.

[10]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[11]  Harold S. Park,et al.  Mechanics of Crystalline Nanowires , 2009 .

[12]  Zhong-Lin Wang Towards Self‐Powered Nanosystems: From Nanogenerators to Nanopiezotronics , 2008 .

[13]  Eleftherios E. Gdoutos,et al.  Elasticity size effects in ZnO nanowires--a combined experimental-computational approach. , 2008, Nano letters.

[14]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[15]  Min Zhou,et al.  Novel mechanical behavior of ZnO nanorods , 2008 .

[16]  David Cornu,et al.  Mechanical properties of SiC nanowires determined by scanning electron and field emission microscopies , 2008 .

[17]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2008, Nature.

[18]  H. V. D. Zant,et al.  Nanomechanical properties of few-layer graphene membranes , 2008, 0802.0413.

[19]  R. Cook,et al.  Diameter-Dependent Radial and Tangential Elastic Moduli of ZnO Nanowires , 2007 .

[20]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[21]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[22]  Richard D. James,et al.  Objective Molecular Dynamics , 2007 .

[23]  Amit V. Desai,et al.  Mechanical properties of ZnO nanowires , 2007, SPIE MOEMS-MEMS.

[24]  K. Hwang,et al.  Thickness of graphene and single-wall carbon nanotubes , 2006 .

[25]  D. Srivastava,et al.  Silicon carbide nanowires under external loads: An atomistic simulation study , 2006 .

[26]  Xiaodong Li,et al.  Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques , 2006, Nanotechnology.

[27]  X. Bai,et al.  In situ mechanical properties of individual ZnO nanowires and the mass measurement of nanoparticles , 2006 .

[28]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[29]  Y. S. Zhang,et al.  Size dependence of Young's modulus in ZnO nanowires. , 2006, Physical review letters.

[30]  Stephane Evoy,et al.  Diameter-dependent electromechanical properties of GaN nanowires. , 2006, Nano letters.

[31]  Min Zhou,et al.  Orientation and size dependence of the elastic properties of zinc oxide nanobelts , 2005 .

[32]  J. Gaillard,et al.  Determination of the bending modulus of an individual multiwall carbon nanotube using an electric harmonic detection of resonance technique. , 2005, Nano letters.

[33]  Horacio D Espinosa,et al.  An electromechanical material testing system for in situ electron microscopy and applications. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Quanshui Zheng,et al.  Size dependence of the thin-shell model for carbon nanotubes. , 2005, Physical review letters.

[35]  Elisa Riedo,et al.  Elastic property of vertically aligned nanowires. , 2005, Nano letters.

[36]  Rodney S. Ruoff,et al.  Mechanics of Crystalline Boron Nanowires , 2005 .

[37]  M. Dresselhaus,et al.  Electronic, thermal and mechanical properties of carbon nanotubes , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[38]  Abhijit P. Suryavanshi,et al.  Elastic modulus and resonance behavior of boron nitride nanotubes , 2004 .

[39]  Mary C. Boyce,et al.  Mechanics of deformation of single- and multi-wall carbon nanotubes , 2004 .

[40]  Liangchi Zhang,et al.  Effective wall thickness of a single-walled carbon nanotube , 2003 .

[41]  Ken Gall,et al.  Surface-stress-induced phase transformation in metal nanowires , 2003, Nature materials.

[42]  F. Yuan,et al.  Simulation of elastic properties of single-walled carbon nanotubes , 2003 .

[43]  Enge Wang,et al.  Dual-mode mechanical resonance of individual ZnO nanobelts , 2003 .

[44]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Chunyu Li,et al.  A STRUCTURAL MECHANICS APPROACH FOR THE ANALYSIS OF CARBON NANOTUBES , 2003 .

[46]  Z. C. Tu,et al.  Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number , 2001, cond-mat/0112454.

[47]  Boris I. Yakobson,et al.  C2F, BN, AND C NANOSHELL ELASTICITY FROM AB INITIO COMPUTATIONS , 2001 .

[48]  H. Urbassek,et al.  Tubular structures of silicon , 2001 .

[49]  Zhong Lin Wang Characterizing the Structure and Properties of Individual Wire-Like Nanoentities , 2000 .

[50]  G. Seifert,et al.  Theoretical prediction of phosphorus nanotubes , 2000 .

[51]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[52]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[53]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[54]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[55]  D. Sánchez-Portal,et al.  AB INITIO STRUCTURAL, ELASTIC, AND VIBRATIONAL PROPERTIES OF CARBON NANOTUBES , 1998, cond-mat/9811363.

[56]  P. Bernier,et al.  Elastic properties of single-wall nanotubes , 1998, cond-mat/9811257.

[57]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[58]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998, cond-mat/9804226.

[59]  Alex Zettl,et al.  Measurement of the Elastic Modulus of a Multi-Wall Boron Nitride Nanotube , 1998 .

[60]  David R. Bowler,et al.  Tight-binding modelling of materials , 1997 .

[61]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[62]  J. Lu Elastic Properties of Carbon Nanotubes and Nanoropes , 1997, cond-mat/9704219.

[63]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[64]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[65]  Rosato,et al.  Tight-binding potentials for transition metals and alloys. , 1993, Physical review. B, Condensed matter.

[66]  Murray S. Daw,et al.  The embedded-atom method: a review of theory and applications , 1993 .

[67]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[68]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[69]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[70]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[71]  C. Catlow,et al.  Potential models for ionic oxides , 1985 .

[72]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .

[73]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[74]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[75]  D. Dikin,et al.  Resonance vibration of amorphous SiO2 nanowires driven by mechanical or electrical field excitation , 2003 .

[76]  P. Avouris,et al.  Mechanical Properties of Carbon Nanotubes , 2001 .

[77]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[78]  D. Binks Computational Modelling of Zinc Oxide and Related Oxide Ceramics , 1994 .