Synthesis and Structure of Lewis‐Base‐Free Phosphinoalumane Derivatives

Lewis-base-free diphosphinoalumane and 1-hydro-2-chlorophosphinoalumane derivatives bearing a bulky aryl substituent were synthesized by the reaction of the corresponding lithium phosphide and dichloroalumane. Structures of these phosphinoalumane derivatives were determined by spectroscopic and X-ray crystallographic analyses. Because of the efficient steric protection by the bulky aryl substituent, the aluminum centers in these phosphinoalumane derivatives have tricoordinate geometry. Reactions of the phosphinoalumane derivatives with organolithium reagents and bases were investigated.

[1]  Shih‐Yuan Liu,et al.  BN isosteres of indole. , 2013, Organic & biomolecular chemistry.

[2]  Shih‐Yuan Liu,et al.  Recent advances in azaborine chemistry. , 2012, Angewandte Chemie.

[3]  S. Aldridge,et al.  The Group 13 Metals Aluminium, Gallium, Indium and Thallium: Chemical Patterns and Peculiarities , 2011 .

[4]  P. Power,et al.  Pi-bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the new millennium. , 2010, Chemical reviews.

[5]  R. Paine,et al.  Synthesis and Reactivity of New Bis(tetramethylpiperidino)(phosphanyl)alumanes , 2007 .

[6]  C. Hänisch Ligandstabilisierte cyclische und polycyclische Aluminium‐Phosphor‐ und Aluminium‐Arsen‐Verbindungen , 2003 .

[7]  C. Hänisch,et al.  Synthese, Kristallstrukturen und quantenchemische Untersuchung von Verbindungen mit leiterartigem Al4P4- und hexagonal prismatischem Al6P6-Grundgerüst , 2002 .

[8]  P. Power π-Bonding and the Lone Pair Effect in Multiple Bonds between Heavier Main Group Elements , 1999 .

[9]  I. Krossing,et al.  The Aluminum–Nitrogen Bond in Monomeric Bis(amino)alanes: A Systematic Experimental Study of Bis(tetramethylpiperidino)alanes and Quantum Mechanical Calculations on the Model System (H2N)2AlY , 1998 .

[10]  T. Mak,et al.  Synthesis and Characterization of Monomeric Amide, Phosphide, and Thiolate Complexes of Gallium and Indium , 1996 .

[11]  P. Power,et al.  New Routes to Synthetically Useful, Sterically Encumbered Arylaluminum Halides and Hydride Halides. , 1996, Inorganic chemistry.

[12]  R. Grubbs,et al.  Safe and Convenient Procedure for Solvent Purification , 1996 .

[13]  P. Power,et al.  Reactions of (H2AlMes*)2 (Mes* = 2,4,6-(t-Bu)3C6H2) with H2EAr (E = N, P, or As; Ar = aryl): Characterization of the Ring Compounds (Mes*AlNPh)2 and (Mes*AlEPh)3 (E = P or As) , 1996 .

[14]  P. Power,et al.  Synthesis and characterization of unassociated aluminum monophosphides , 1994 .

[15]  Richard A. Jones,et al.  Synthesis and structure of the first base-free diphosphadigalletane , 1991 .

[16]  A. Cowley,et al.  Diphosphenes (RP:PR). Synthesis and NMR characterization , 1983 .

[17]  W. Piers,et al.  B-N as a C-C substitute in aromatic systems , 2009 .

[18]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[19]  M. Nieger,et al.  A General Synthetic Pathway to Lewis Base‐Stabilized, MonomericGroup 13/15 Compounds , 2001 .

[20]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[21]  R. Blessing,et al.  An empirical correction for absorption anisotropy. , 1995, Acta crystallographica. Section A, Foundations of crystallography.

[22]  Richard A. Jones,et al.  Monomeric base-stabilized phosphino- and arsinoalanes , 1993 .

[23]  H. V. Rasika Dias,et al.  Synthesis and characterization of bulky aryl derivatives of the heavier Main Group 3 elements , 1993 .