The EcoCyc Database

EcoCyc is an organism-specific pathway/genome database that describes the metabolic and signal-transduction pathways of Escherichia coli, its enzymes, its transport proteins and its mechanisms of transcriptional control of gene expression. EcoCyc is queried using the Pathway Tools graphical user interface, which provides a wide variety of query operations and visualization tools. EcoCyc is available at http://ecocyc.org/.

[1]  Alexander Gammerman,et al.  Sequence alignment kernel for recognition of promoter regions , 2003, Bioinform..

[2]  Suzanne M. Paley,et al.  Integrated pathway/genome databases and their role in drug discovery , 1999 .

[3]  Cyrus Chothia,et al.  Comparison of the small molecule metabolic enzymes of Escherichia coli and Saccharomyces cerevisiae. , 2002, Genome research.

[4]  B. Bochner,et al.  Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. , 2001, Genome research.

[5]  Julio Collado-Vides,et al.  RegulonDB (version 3.2): transcriptional regulation and operon organization in Escherichia coli K-12 , 2001, Nucleic Acids Res..

[6]  Hiroyuki Kaji,et al.  Only a Small Subset of the Horizontally Transferred Chromosomal Genes in Escherichia coli Are Translated into Proteins*S , 2004, Molecular & Cellular Proteomics.

[7]  Ramon Gonzalez,et al.  Gene Array‐Based Identification of Changes That Contribute to Ethanol Tolerance in Ethanologenic Escherichia coli: Comparison of KO11 (Parent) to LY01 (Resistant Mutant) , 2003, Biotechnology progress.

[8]  Janet M Thornton,et al.  Analysis of metabolic networks using a pathway distance metric through linear programming. , 2003, Metabolic engineering.

[9]  J. Collado-Vides,et al.  The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12. , 2000, Nucleic acids research.

[10]  Peter D. Karp,et al.  A Collaborative Environment for Authoring Large Knowledge Bases , 1999, Journal of Intelligent Information Systems.

[11]  P D Karp,et al.  Pathway Databases: A Case Study in Computational Symbolic Theories , 2001, Science.

[12]  B. Palsson,et al.  Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates , 1993, Applied and environmental microbiology.

[13]  J. Bailey,et al.  Toward a science of metabolic engineering , 1991, Science.

[14]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[15]  G. Stephanopoulos,et al.  Network rigidity and metabolic engineering in metabolite overproduction , 1991, Science.

[16]  M. Frazier,et al.  Realizing the Potential of the Genome Revolution: The Genomes to Life Program , 2003, Science.

[17]  Peter D. Karp,et al.  An ontology for biological function based on molecular interactions , 2000, Bioinform..

[18]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[19]  Matteo Pellegrini,et al.  Prolinks: a database of protein functional linkages derived from coevolution , 2004, Genome Biology.

[20]  Peter D. Karp,et al.  Eco Cyc: encyclopedia of Escherichia coli genes and metabolism , 1999, Nucleic Acids Res..

[21]  Joachim Selbig,et al.  Hypothesis-driven approach to predict transcriptional units from gene expression data , 2004, Bioinform..

[22]  A. Bélaich,et al.  Microcalorimetric study of the anaerobic growth of Escherichia coli: growth thermograms in a synthetic medium , 1976, Journal of bacteriology.

[23]  M. Riley,et al.  MultiFun, a multifunctional classification scheme for Escherichia coli K-12 gene products. , 2000, Microbial & comparative genomics.

[24]  Milton H. Saier,et al.  The IUBMB-endorsed transporter classification system , 2004, Methods in molecular biology.

[25]  Peter D. Karp,et al.  EcoCyc: The Resource and the Lessons Learned , 2002 .

[26]  Janet M Thornton,et al.  Pathway evolution, structurally speaking. , 2002, Current opinion in structural biology.

[27]  R. Larossa,et al.  Impact of genomic technologies on studies of bacterial gene expression. , 2002, Annual review of microbiology.

[28]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[29]  B. Palsson,et al.  Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth , 2002, Nature.

[30]  J. W. Campbell,et al.  Experimental Determination and System Level Analysis of Essential Genes in Escherichia coli MG1655 , 2003, Journal of bacteriology.

[31]  A. Zeng,et al.  An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. , 2004, Nucleic acids research.

[32]  Peter D. Karp Using the EcoCyc Database , 1997 .

[33]  Frank Hoffmann,et al.  Metabolic adaptation of Escherichia coli during temperature-induced recombinant protein production: 2. Redirection of metabolic fluxes. , 2002, Biotechnology and bioengineering.

[34]  Masanori Arita The metabolic world of Escherichia coli is not small. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Peter D. Karp,et al.  Integrated Access to Metabolic and Genomic Data , 1996, J. Comput. Biol..

[36]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[37]  Peter D. Karp,et al.  The EcoCyc and MetaCyc databases , 2000, Nucleic Acids Res..