Hyper-bent Boolean Functions with Multiple Trace Terms
暂无分享,去创建一个
[1] Anne Canteaut,et al. Construction of bent functions via Niho power functions , 2006, J. Comb. Theory, Ser. A.
[2] Guang Gong,et al. Hyperbent Functions, Kloosterman Sums, and Dickson Polynomials , 2008, IEEE Trans. Inf. Theory.
[3] Claude Carlet,et al. Boolean Functions for Cryptography and Error-Correcting Codes , 2010, Boolean Models and Methods.
[4] Anne Canteaut,et al. A new class of monomial bent functions , 2006, 2006 IEEE International Symposium on Information Theory.
[5] Robert Gold,et al. Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.) , 1968, IEEE Trans. Inf. Theory.
[6] Hans Dobbertin,et al. New cyclic difference sets with Singer parameters , 2004, Finite Fields Their Appl..
[7] Guang Gong,et al. Constructions of quadratic bent functions in polynomial forms , 2006, IEEE Transactions on Information Theory.
[8] Gregor Leander,et al. Monomial bent functions , 2006, IEEE Transactions on Information Theory.
[9] Sihem Mesnager. A New Family of Hyper-Bent Boolean Functions in Polynomial Form , 2009, IMACC.
[10] L. Carlitz. Explicit evaluation of certain exponential sums. , 1979 .
[11] O. S. Rothaus,et al. On "Bent" Functions , 1976, J. Comb. Theory, Ser. A.
[12] Pascale Charpin,et al. Cubic Monomial Bent Functions: A Subclass of M , 2008, SIAM J. Discret. Math..
[13] Tor Helleseth,et al. Divisibility properties of Kloosterman sums over finite fields of characteristic two , 2008, 2008 IEEE International Symposium on Information Theory.
[14] J. Dillon. Elementary Hadamard Difference Sets , 1974 .
[15] Claude Carlet,et al. Hyper-bent functions and cyclic codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[16] Amr M. Youssef,et al. Hyper-bent Functions , 2001, EUROCRYPT.
[17] Sihem Mesnager,et al. A new class of bent and hyper-bent Boolean functions in polynomial forms , 2011, Des. Codes Cryptogr..
[18] G. Lachaud,et al. The weights of the orthogonals of the extended quadratic binary Goppa codes , 1990, IEEE Trans. Inf. Theory.