Circuit Analysis in Metal-Optics, Theory and Applications

In the first part of the dissertation we provide electrical circuit descriptions for bulk plasmons, single-surface plasmons, and parallel-plate plasmons. Simple circuits can reproduce the exact frequency versus wave-vector dispersion relations for all these cases, with reasonable accuracy. The circuit paradigm directly provides a characteristic wave impedance that is rarely discussed in the context of plasmonics. Owing to the presence of kinetic inductance, a plasmonic transmission line can support very large characteristic impedances on the order of kilo-Ohms. The ability to adjust the plasmonic wave impedance allows voltage transformer action at optical frequencies, through tapered metallic structures. This transformer action can be used to engineer efficientdelivery of optical power to the nanoscale, or as an impedance matching tool toward molecular light emitters.In the second part of the dissertation we discuss at length the application of plasmonic impedance matching to the problem of heat assisted magnetic recording (HAMR) where an optical antenna is used to concentrate optical power to nanoscale dimensions on the surface of amagnetic hard-disk drive.

[1]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[2]  K. Crozier,et al.  Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies. , 2010, ACS nano.

[3]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[4]  E. Wolf,et al.  Electromagnetic diffraction in optical systems - I. An integral representation of the image field , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  R. Kaul,et al.  Microwave engineering , 1989, IEEE Potentials.

[6]  N. Gershenfeld The Physics Of Information Technology , 2000 .

[7]  Lambertus Hesselink,et al.  Nano-aperture with 1000x power throughput enhancement for very small aperture laser system (VSAL) , 2002, Optical Data Storage.

[8]  E. Jordan,et al.  Electromagnetic Waves and Radiating Systems , 1951 .

[9]  Takayuki Okamoto,et al.  Near-field spectral analysis of metallic beads , 2001 .

[10]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[11]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[12]  S. Ramo,et al.  Fields and Waves in Communication Electronics , 1966 .

[13]  Andrea Alù,et al.  Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. , 2004, Physical review letters.

[14]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[15]  Study of plasmon resonance in a gold nanorod with an LC circuit model. , 2009, Optics express.

[16]  Tihomir Car Lectures on Physics , 2013 .

[17]  H.A. Wheeler,et al.  Fundamental Limitations of Small Antennas , 1947, Proceedings of the IRE.

[18]  G. Dubost,et al.  Effective area of an antenna , 1976 .

[19]  W. Challener,et al.  Near-Field Optics for Heat-Assisted Magnetic Recording (Experiment, Theory, and Modeling) , 2009 .

[20]  Andrea Alù,et al.  Wireless at the nanoscale: optical interconnects using matched nanoantennas. , 2010, Physical review letters.

[21]  Focusing characteristics of a planar solid-immersion mirror. , 2006, Applied optics.

[22]  Chubing Peng,et al.  Input-grating couplers for narrow Gaussian beam: influence of groove depth. , 2004, Optics express.

[23]  H. Barlow Surface Waves , 1958, Proceedings of the IRE.

[24]  Dmitri K. Gramotnev,et al.  Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides , 2006 .

[25]  C. Peng Surface-plasmon resonance of a planar lollipop near-field transducer , 2009 .

[26]  S. Kawata,et al.  Negative magnetic permeability in the visible light region. , 2005, Physical review letters.

[27]  R. Bansal,et al.  Antenna theory , 1983, IEEE Antennas and Propagation Society Newsletter.

[28]  E. N. Economou,et al.  Saturation of the magnetic response of split-ring resonators at optical frequencies. , 2005, Physical review letters.

[29]  J. S. Shang,et al.  Computational electromagnetics , 1996, CSUR.

[30]  Andrea Alù,et al.  Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. , 2007, Physical review letters.

[31]  Chubing Peng,et al.  Optical Transducers for Near Field Recording , 2006 .

[32]  Lukas Novotny,et al.  Spectral dependence of single molecule fluorescence enhancement. , 2007, Optics express.

[33]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[34]  Ulf Peschel,et al.  Excitation of plasmonic gap waveguides by nanoantennas. , 2009, Optics express.

[35]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[36]  Duane C. Karns,et al.  Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer , 2009 .

[37]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[38]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[39]  W. Challener,et al.  Light delivery for heat assisted magnetic recording , 2002, International Symposium on Optical Memory and Optical Data Storage Topical Meeting.

[40]  H. B. Dwight,et al.  Tables of Integrals and Other Mathematical Data , 1934 .

[41]  T. McDaniel Ultimate limits to thermally assisted magnetic recording , 2005 .

[42]  Bert Hecht,et al.  Impedance matching and emission properties of nanoantennas in an optical nanocircuit. , 2009, Nano letters.

[43]  Jordan A. Katine,et al.  Magnetic recording at 1.5 Pb m −2 using an integrated plasmonic antenna , 2010 .

[44]  J. Popp,et al.  Surface-enhanced Raman spectroscopy , 2009, Analytical and bioanalytical chemistry.

[45]  N. A. Krall,et al.  Principles of Plasma Physics , 1973 .

[46]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[47]  A. Mubaidin Jordan , 2010, Practical Neurology.

[48]  E. Wolf,et al.  Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[49]  Christophe Mihalcea,et al.  Near-field optical recording using a planar solid immersion mirror , 2005 .

[50]  Christophe Mihalcea,et al.  Miniature planar solid immersion mirror with focused spot less than a quarter wavelength. , 2005, Optics express.

[51]  E. Economou Surface Plasmons in Thin Films , 1969 .

[52]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[53]  K. F. Riley,et al.  Mathematical methods for the physical sciences , 1975 .

[54]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[55]  C. Peng,et al.  Ridge waveguide as a near field aperture for high density data storage , 2004 .

[56]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[57]  F. Ulaby Fundamentals of applied electromagnetics , 1998 .