Discontinuous Galerkin finite element heterogeneous multiscale method for advection–diffusion problems with multiple scales
暂无分享,去创建一个
[1] Assyr Abdulle,et al. Analysis of the finite element heterogeneous multiscale method for nonmonotone elliptic homogenization problems , 2012 .
[2] Assyr Abdulle,et al. Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems , 2012, J. Comput. Phys..
[3] P. J. Park,et al. Multiscale numerical methods for the singularly perturbed convection-diffusion equation , 2004 .
[4] Juhani Pitkäranta,et al. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .
[5] E. Süli,et al. Discontinuous hp-finite element methods for advection-diffusion problems , 2000 .
[6] E Weinan,et al. The heterogeneous multiscale method* , 2012, Acta Numerica.
[7] D. Arnold. An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .
[8] Patrick Henning,et al. The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift , 2010, Networks Heterog. Media.
[9] Michael Andrew Christie,et al. Accurate scale up of two phase flow using renormalization and nonuniform coarsening , 1999 .
[10] E. Giorgi,et al. Sulla convergenza degli integrali dell''energia per operatori ellittici del secondo ordine , 1973 .
[11] Martin Stynes,et al. Steady-state convection-diffusion problems , 2005, Acta Numerica.
[12] Blanca Ayuso de Dios,et al. Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems , 2009, SIAM J. Numer. Anal..
[13] E. Weinan,et al. Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .
[14] Erik Burman,et al. A Domain Decomposition Method Based on Weighted Interior Penalties for Advection-Diffusion-Reaction Problems , 2006, SIAM J. Numer. Anal..
[15] Grégoire Allaire,et al. The mathematical modeling of composite materials , 2002 .
[16] Yalchin Efendiev,et al. Multiscale Finite Element Methods: Theory and Applications , 2009 .
[17] Assyr Abdulle,et al. Multiscale methods for advection-diffusion problems , 2005 .
[18] Assyr Abdulle,et al. On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM , 2005, Multiscale Model. Simul..
[19] Assyr Abdulle,et al. A short and versatile finite element multiscale code for homogenization problems , 2009 .
[20] Mary F. Wheeler,et al. Compatible algorithms for coupled flow and transport , 2004 .
[21] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[22] E Weinan,et al. The Heterogeneous Multiscale Method Based on the Discontinuous Galerkin Method for Hyperbolic and Parabolic Problems , 2005, Multiscale Model. Simul..
[23] Pingbing Ming,et al. Heterogeneous multiscale finite element method with novel numerical integration schemes , 2010 .
[24] S. Agmon. Lectures on Elliptic Boundary Value Problems , 1965 .
[25] Philippe G. Ciarlet,et al. THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS , 1972 .
[26] Assyr Abdulle. Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales , 2012, Math. Comput..
[27] Assyr Abdulle,et al. Second order Chebyshev methods based on orthogonal polynomials , 2001, Numerische Mathematik.
[28] Assyr Abdulle,et al. Fourth Order Chebyshev Methods with Recurrence Relation , 2001, SIAM J. Sci. Comput..
[29] W. H. Reed,et al. Triangular mesh methods for the neutron transport equation , 1973 .
[30] V. Zhikov,et al. Homogenization of Differential Operators and Integral Functionals , 1994 .
[31] Assyr Abdulle,et al. Multiscale method based on discontinuous Galerkin methods for homogenization problems , 2008 .
[32] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[33] Assyr Abdulle,et al. Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems , 2013, Math. Comput..
[34] Bo Dong,et al. Optimal Convergence of the Original DG Method on Special Meshes for Variable Transport Velocity , 2010, SIAM J. Numer. Anal..
[35] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[36] E Weinan,et al. The Heterognous Multiscale Methods , 2003 .
[37] Grégoire Allaire,et al. Homogenization of a convection–diffusion model with reaction in a porous medium , 2007 .
[38] Assyr Abdulle,et al. The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs , 2009 .
[39] P. Henning,et al. A-posteriori error estimate for a heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift , 2009 .
[40] A. Abdulle. ANALYSIS OF A HETEROGENEOUS MULTISCALE FEM FOR PROBLEMS IN ELASTICITY , 2006 .