Discontinuous Galerkin finite element heterogeneous multiscale method for advection–diffusion problems with multiple scales

A discontinuous Galerkin finite element heterogeneous multiscale method is proposed for advection–diffusion problems with highly oscillatory coefficients. The method is based on a coupling of a discontinuous Galerkin discretization for an effective advection–diffusion problem on a macroscopic mesh, whose a priori unknown data are recovered from micro finite element calculations on sampling domains within each macro element. The computational work involved is independent of the high oscillations in the problem at the smallest scale. The stability of our method (depending on both macro and micro mesh sizes) is established for both diffusion dominated and advection dominated regimes without any assumptions about the type of heterogeneities in the data. Fully discrete a priori error bounds are derived for locally periodic data. Numerical experiments confirm the theoretical error estimates.

[1]  Assyr Abdulle,et al.  Analysis of the finite element heterogeneous multiscale method for nonmonotone elliptic homogenization problems , 2012 .

[2]  Assyr Abdulle,et al.  Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems , 2012, J. Comput. Phys..

[3]  P. J. Park,et al.  Multiscale numerical methods for the singularly perturbed convection-diffusion equation , 2004 .

[4]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[5]  E. Süli,et al.  Discontinuous hp-finite element methods for advection-diffusion problems , 2000 .

[6]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[7]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[8]  Patrick Henning,et al.  The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift , 2010, Networks Heterog. Media.

[9]  Michael Andrew Christie,et al.  Accurate scale up of two phase flow using renormalization and nonuniform coarsening , 1999 .

[10]  E. Giorgi,et al.  Sulla convergenza degli integrali dell''energia per operatori ellittici del secondo ordine , 1973 .

[11]  Martin Stynes,et al.  Steady-state convection-diffusion problems , 2005, Acta Numerica.

[12]  Blanca Ayuso de Dios,et al.  Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems , 2009, SIAM J. Numer. Anal..

[13]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[14]  Erik Burman,et al.  A Domain Decomposition Method Based on Weighted Interior Penalties for Advection-Diffusion-Reaction Problems , 2006, SIAM J. Numer. Anal..

[15]  Grégoire Allaire,et al.  The mathematical modeling of composite materials , 2002 .

[16]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[17]  Assyr Abdulle,et al.  Multiscale methods for advection-diffusion problems , 2005 .

[18]  Assyr Abdulle,et al.  On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM , 2005, Multiscale Model. Simul..

[19]  Assyr Abdulle,et al.  A short and versatile finite element multiscale code for homogenization problems , 2009 .

[20]  Mary F. Wheeler,et al.  Compatible algorithms for coupled flow and transport , 2004 .

[21]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[22]  E Weinan,et al.  The Heterogeneous Multiscale Method Based on the Discontinuous Galerkin Method for Hyperbolic and Parabolic Problems , 2005, Multiscale Model. Simul..

[23]  Pingbing Ming,et al.  Heterogeneous multiscale finite element method with novel numerical integration schemes , 2010 .

[24]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[25]  Philippe G. Ciarlet,et al.  THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS , 1972 .

[26]  Assyr Abdulle Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales , 2012, Math. Comput..

[27]  Assyr Abdulle,et al.  Second order Chebyshev methods based on orthogonal polynomials , 2001, Numerische Mathematik.

[28]  Assyr Abdulle,et al.  Fourth Order Chebyshev Methods with Recurrence Relation , 2001, SIAM J. Sci. Comput..

[29]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[30]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[31]  Assyr Abdulle,et al.  Multiscale method based on discontinuous Galerkin methods for homogenization problems , 2008 .

[32]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[33]  Assyr Abdulle,et al.  Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems , 2013, Math. Comput..

[34]  Bo Dong,et al.  Optimal Convergence of the Original DG Method on Special Meshes for Variable Transport Velocity , 2010, SIAM J. Numer. Anal..

[35]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[36]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[37]  Grégoire Allaire,et al.  Homogenization of a convection–diffusion model with reaction in a porous medium , 2007 .

[38]  Assyr Abdulle,et al.  The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs , 2009 .

[39]  P. Henning,et al.  A-posteriori error estimate for a heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift , 2009 .

[40]  A. Abdulle ANALYSIS OF A HETEROGENEOUS MULTISCALE FEM FOR PROBLEMS IN ELASTICITY , 2006 .