A Generalized-Structure Approach to Additive Runge-Kutta Methods

This work considers a general structure of the additively partitioned Runge--Kutta methods by allowing for different stage values as arguments of different components of the right-hand side. An order conditions theory is developed for the new formulation of generalized additive methods, and stability and monotonicity investigations are carried out. The paper discusses the construction and properties of implicit-explicit and implicit-implicit methods in the new framework. The new approach, named GARK, introduces additional flexibility when compared to traditional partitioned Runge--Kutta formalism and therefore offers additional opportunities for the development of flexible solvers for systems with multiple scales, or driven by multiple physical processes.

[1]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[2]  Inmaculada Higueras,et al.  Characterizing Strong Stability Preserving Additive Runge-Kutta Methods , 2009, J. Sci. Comput..

[3]  Inmaculada Higueras,et al.  On Strong Stability Preserving Time Discretization Methods , 2004, J. Sci. Comput..

[4]  Inmaculada Higueras,et al.  Contractivity/monotonicity for additive Runge-Kutta methods: inner product norms , 2006 .

[5]  Inmaculada Higueras,et al.  Monotonicity for Runge–Kutta Methods: Inner Product Norms , 2005, J. Sci. Comput..

[6]  J. M. Sanz-Serna,et al.  Symplectic Methods Based on Decompositions , 1997 .

[7]  A. Kværnø,et al.  Norges Teknisk-naturvitenskapelige Universitet Singly Diagonally Implicit Runge-kutta Methods with an Explicit First Stage Singly Diagonally Implicit Runge-kutta Methods with an Explicit First Stage , 2022 .

[8]  A. Prothero,et al.  On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations , 1974 .

[9]  J. Kraaijevanger Contractivity of Runge-Kutta methods , 1991 .

[10]  Rüdiger Weiner,et al.  Partitioning strategies in Runge-Kutta type methods , 1993 .

[11]  W. Hundsdorfer,et al.  Monotonicity conditions for multirate and partitioned explicit Runge-Kutta schemes , 2012 .

[12]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[13]  M. N. Spijker Stepsize Conditions for General Monotonicity in Numerical Initial Value Problems , 2007, SIAM J. Numer. Anal..

[14]  Inmaculada Higueras,et al.  Strong Stability for Additive Runge-Kutta Methods , 2006, SIAM J. Numer. Anal..

[15]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[16]  E. Hairer Order conditions for numerical methods for partitioned ordinary differential equations , 1981 .

[17]  John R. Rice,et al.  Split Runge-Kutta method for simultaneous equations , 1960 .

[18]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[19]  P. Rentrop,et al.  Partitioned Runge-Kutta methods with stiffness detection and stepsize control , 1985 .

[20]  Inmaculada Higueras,et al.  Representations of Runge-Kutta Methods and Strong Stability Preserving Methods , 2005, SIAM J. Numer. Anal..

[21]  G. J. Cooper,et al.  Additive Runge-Kutta methods for stiff ordinary differential equations , 1983 .

[22]  Adrian Sandu,et al.  A class of generalized additive Runge-Kutta methods , 2013, ArXiv.