교수내용지식을 위한 하이브리드 지식 표현 기법

지능형 교수 시스템(ITS: Intelligent Tutoring System)이 기존의 CAI의 제한적 기능을 극복하고, 내장한 지식베이스에 의해 다양한 학습자들의 변인들을 고려한 개별화된 학습 환경을 제공하지만, 교육현장에는 교수내용지식 표현 방법의 부재와 투자 비용의 비효율성으로 인하여 실제적인 개발물은 전무한 상태이다. 이러한 문제점을 해소하기 위하여 ITS에서의 지식표현 기법과 구축된 지식베이스의 재사용에 대한 연구가 필요하다. 교수내용지식의 특성을 고려하여 본 연구에서는 기존의 신경논리망의 한계점을 해결할 수 있도록 지식의 다중 결합체 구성, 이를 이용한 학습의 맥락 설명을 연구의 대상으로 삼았다. 또한 형성된 지식결합체는 군집화하여 지식베이스 객체로 사용하고, 결합체의 자기 학습에 의해 적응적인 지식베이스 객체로의 성장 가능성을 제고한다, 따라서 본 연구에서는 신경논리망의 논리추론, 그리고 인지구조에서 노드의 위상적 불변성을 근거로, 교수내용지식과 객체지향적 개념이 포함된 ‘확장된 개념의 신경논리망(X-Neuronet: eXtended Neural Logic Network)’을 제안하고, 이 기법에 대한 타당성을 검증하였다. X-Neuronet은 표현의 대상이 되는 지식을 관성과 가변성을 가지는 방향성 결합체로 정의하고, 표현을 위한 기본 개념, 노드의 처리와 연산을 위한 논리연산자, 노드값과 가중치의 결정, 노드활성을 위한 전파 규칙, 학습 알고리즘 등을 제공한다.