Multi-axis fluidic thrust vectoring of supersonic jets via counterflow

The most common techniques currently used to efficiently vector supersonic jets require external flaps and or pivoting devices. Fluidic thrust vectoring using counterflow eliminates the need for such complex hardware. Thus, the promise of decreases in both weight and drag as well as increased maneuverability makes this technique an attractive alternative. This technique has been successfully employed to achieve single axis fluidic thrust vectoring of a Mach 2 rectangular jet. To better compete with contemporary systems the current study extends this technique to multi-axis thrust vectoring of a Mach 2 diamond-shaped jet by applying counterflow to one of its four sides. To evaluate the performance of this technique the Planar Laser Scattering (PLS) technique is used to show the continuous vectoring of the diamond jet up to 20 degrees. Also, cross-stream PLS images are acquired to show the vectoring can be achieved off all four surfaces of the diamond jet.