On sums of Ap\'ery polynomials and related congruences

The Ap\'ery polynomials are given by $$A_n(x)=\sum_{k=0}^n\binom nk^2\binom{n+k}k^2x^k\ \ (n=0,1,2,\ldots).$$ (Those $A_n=A_n(1)$ are Ap\'ery numbers.) Let $p$ be an odd prime. We show that $$\sum_{k=0}^{p-1}(-1)^kA_k(x)\equiv\sum_{k=0}^{p-1}\frac{\binom{2k}k^3}{16^k}x^k\pmod{p^2},$$ and that $$\sum_{k=0}^{p-1}A_k(x)\equiv\left(\frac xp\right)\sum_{k=0}^{p-1}\frac{\binom{4k}{k,k,k,k}}{(256x)^k}\pmod{p}$$ for any $p$-adic integer $x\not\equiv 0\pmod p$. This enables us to determine explicitly $\sum_{k=0}^{p-1}(\pm1)^kA_k$ mod $p$, and $\sum_{k=0}^{p-1}(-1)^kA_k$ mod $p^2$ in the case $p\equiv 2\pmod3$. Another consequence states that $$\sum_{k=0}^{p-1}(-1)^kA_k(-2)\equiv\begin{cases}4x^2-2p\pmod{p^2}&\mbox{if}\ p=x^2+4y^2\ (x,y\in\mathbb Z),\\0\pmod{p^2}&\mbox{if}\ p\equiv3\pmod4.\end{cases}$$ We also prove that for any prime $p>3$ we have $$\sum_{k=0}^{p-1}(2k+1)A_k\equiv p+\frac 76p^4B_{p-3}\pmod{p^5}$$ where $B_0,B_1,B_2,\ldots$ are Bernoulli numbers.

[1]  Zhi-Wei Sun,et al.  On Delannoy numbers and Schr\"oder numbers , 2010, 1009.2486.

[2]  Zhi-Wei Sun,et al.  Super congruences and Euler numbers , 2010, 1001.4453.

[3]  Eric T. Mortenson A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function , 2003 .

[4]  Alfred J. van der Poorten,et al.  A proof that Euler missed ... , 1979 .

[5]  T. Ishikawa Super congruence for the Apéry numbers , 1990, Nagoya Mathematical Journal.

[6]  Zhi-Hong Sun,et al.  Congruences concerning Bernoulli numbers and Bernoulli polynomials , 2000, Discret. Appl. Math..

[7]  It Informatics On-Line Encyclopedia of Integer Sequences , 2010 .

[8]  B. Dwork,et al.  On the mod p2 determination of ((p − 1)4(p − 1)2) , 1986 .

[9]  Zhi-Wei Sun Open Conjectures on Congruences , 2009, 0911.5665.

[10]  Alfred J. van der Poorten,et al.  A Proof that Euler Missed... , 2000 .

[11]  Zhi-Wei Sun,et al.  New congruences for central binomial coefficients , 2008, Adv. Appl. Math..

[12]  K. Williams,et al.  Gauss and Jacobi sums , 2021, Mathematical Surveys and Monographs.

[13]  Zhi-Wei Sun,et al.  Super congruences and Euler numbers , 2011 .

[14]  Zhi-Hong Sun Congruences concerning Legendre polynomials , 2010, 1012.3833.

[15]  Zhi-Wei Sun,et al.  On congruences related to central binomial coefficients , 2009, 0911.2415.

[16]  S. Ahlgren Gaussian hypergeometric series and combinatorial congruences , 2001 .

[17]  Frits Beukers,et al.  Another congruence for the Apéry numbers , 1987 .

[18]  S. Chowla,et al.  On the mod p 2 determination of ((p-1)/2 (p-1)/4) , 1986 .

[19]  Zhi-Wei Sun On sums involving products of three binomial coefficients , 2010, 1012.3141.

[20]  Ken Ono,et al.  A Gaussian hypergeometric series evaluation and Apéry number congruences , 2000 .

[21]  IV JohnS.Caughman,et al.  A note on lattice chains and Delannoy numbers , 2008, Discret. Math..

[22]  Eric T. Mortenson Supercongruences for truncated n+1Fn hypergeometric series with applications to certain weight three newforms , 2004 .

[23]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[24]  Emma Lehmer,et al.  On Congruences Involving Bernoulli Numbers and the Quotients of Fermat and Wilson , 1938 .

[25]  Ken Ono,et al.  The web of modularity : arithmetic of the coefficients of modular forms and q-series , 2003 .

[26]  Victor J. W. Guo,et al.  Proof of some conjectures of Z.-W. Sun on congruences for Apéry polynomials , 2011, 1101.0983.

[27]  Frank G. Garvan,et al.  Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics , 2011 .

[28]  Zhi-Hong Sun Congruences concerning Legendre polynomials II , 2010, 1012.3898.