User-independent optical path length compensation scheme with sub-ns timing resolution for 1xN quantum key distribution network system

Quantum key distribution (QKD) networks constitute promising solutions for secure communication. Beyond conventional point-to-point QKD, we developed 1xN QKD network systems with a sub-ns resolution optical path length compensation scheme. With a practical plug-and-play QKD architecture and compact timing control modules based on a field programmable gate array (FPGA), we achieved long term stable operation of a 1x64 QKD network system. Using this architecture, 64 users can simultaneously share secret keys with one server, without using complex software algorithms and expensive hardware. We demonstrated the working of a 1x4 QKD network system using the fiber network of a metropolitan area.

[1]  P. Kumavor,et al.  Comparison of four multi-user quantum key distribution schemes over passive optical networks , 2004, Journal of Lightwave Technology.

[2]  Zheng-Fu Han,et al.  Extensible router for a quantum key distribution network , 2008 .

[3]  Eric Donkor Experimental auto-compensating multi-user quantum key distribution network using a wavelength-addressed bus line architecture , 2012, Defense + Commercial Sensing.

[4]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[5]  Paul D. Townsend,et al.  Quantum cryptography on multiuser optical fibre networks , 1997, Nature.

[6]  Tao Zhang,et al.  Field Experiment on a “Star Type” Metropolitan Quantum Key Distribution Network , 2009, IEEE Photonics Technology Letters.

[7]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[8]  Qiao-Yan Wen,et al.  Quantum private query: A new kind of practical quantum cryptographic protocol , 2019, Science China Physics, Mechanics & Astronomy.

[9]  Dong Liu,et al.  Field and long-term demonstration of a wide area quantum key distribution network , 2014, Optics express.

[10]  N. Gisin,et al.  Quantum cryptography over 23 km in installed under-lake telecom fibre , 1996 .

[11]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[12]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[13]  Kai Chen,et al.  Metropolitan all-pass and inter-city quantum communication network. , 2010, Optics express.

[14]  Byung Kwon Park,et al.  QKD system with fast active optical path length compensation , 2017 .

[15]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[16]  N. Gisin,et al.  Automated 'plug & play' quantum key distribution , 1998, quant-ph/9812052.

[17]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[18]  Richard J. Hughes,et al.  Experimental investigation of quantum key distribution through transparent optical switch elements , 2003, IEEE Photonics Technology Letters.

[19]  Paul D. Townsend,et al.  Quantum information to the home , 2011, 2011 37th European Conference and Exhibition on Optical Communication.

[20]  Nicolas Godbout,et al.  Multiuser quantum key distribution using wavelength division multiplexing , 2003, Other Conferences.

[21]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[22]  Simon J. D. Phoenix,et al.  Design of quantum cryptography systems for passive optical networks , 1994 .

[23]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[24]  T. Nishioka,et al.  "Circular type" quantum key distribution , 2001, IEEE Photonics Technology Letters.

[25]  Hai Xu,et al.  Experimental demonstration of an active quantum key distribution network with over gbps clock synchronization , 2007, IEEE Communications Letters.

[26]  Tao Wang,et al.  Field demonstration of a continuous-variable quantum key distribution network. , 2016, Optics letters.

[27]  N. Gisin,et al.  “Plug and play” systems for quantum cryptography , 1996, quant-ph/9611042.

[28]  Yang Liu,et al.  Measurement-device-independent quantum key distribution over untrustful metropolitan network , 2015, 1509.08389.

[29]  Momtchil Peev,et al.  Quantum Metropolitan Optical Network based on Wavelength Division Multiplexing , 2014, Optics express.