From genes to circuits and behaviors

Neuropeptide signaling remodels the composition of a chemosensory circuit and shapes behavior in Caenorhabditis elegans. We reported that the ASE left (ASEL) salt sensory neuron uses a proprotein convertase, BLI-4, to cleave the insulin-like peptide INS-6. INS-6 peptides are released from the ASEL neuron in response to large, but not small changes in salt stimuli. Fast INS-6 signaling functionally transforms the AWC olfactory sensory neuron into an interneuron in the neural circuit for high salt. This new circuit configuration potentiates behavioral attraction to high salt. Here, in the context of genes, circuits, and behaviors, we discuss the diverse modes of neuropeptide processing and signaling, which expand the coding potential of the nervous system. First, neuropeptide processing and release genes prepare insulin peptides to signal in the nervous system. Second, this neuropeptide signaling diversifies the communication of neural circuits and introduces circuit-level flexibility. Finally, the resulting multisensory neurons and circuits drive finely tuned behavioral choices.

[1]  Holly Mills,et al.  The Monoaminergic Modulation of Sensory-Mediated Aversive Responses in Caenorhabditis elegans Requires Glutamatergic/Peptidergic Cotransmission , 2010, The Journal of Neuroscience.

[2]  Liliane Schoofs,et al.  Defective processing of neuropeptide precursors in Caenorhabditis elegans lacking proprotein convertase 2 (KPC‐2/EGL‐3): mutant analysis by mass spectrometry , 2006, Journal of neurochemistry.

[3]  Erik M. Jorgensen,et al.  The Sensory Circuitry for Sexual Attraction in C. elegans Males , 2007, Current Biology.

[4]  Chiara Salio,et al.  Neuropeptides as synaptic transmitters , 2006, Cell and Tissue Research.

[5]  M. Zhen,et al.  Attenuation of insulin signalling contributes to FSN‐1‐mediated regulation of synapse development , 2013, The EMBO journal.

[6]  J. Richmond,et al.  Tomosyn Negatively Regulates CAPS-Dependent Peptide Release at Caenorhabditis elegans Synapses , 2007, The Journal of Neuroscience.

[7]  D. Nässel Neuropeptide signaling near and far: how localized and timed is the action of neuropeptides in brain circuits? , 2009, Invertebrate Neuroscience.

[8]  H. Nagata,et al.  The merging of the senses: integration of subthreshold taste and smell , 2000, Nature Neuroscience.

[9]  M. Hendricks,et al.  Two Insulin-like Peptides Antagonistically Regulate Aversive Olfactory Learning in C. elegans , 2013, Neuron.

[10]  S. Waddell,et al.  Diverse Odor-Conditioned Memories Require Uniquely Timed Dorsal Paired Medial Neuron Output , 2004, Neuron.

[11]  I. Mori,et al.  Bidirectional regulation of thermotaxis by glutamate transmissions in Caenorhabditis elegans , 2011, The EMBO journal.

[12]  Aravinthan D. T. Samuel,et al.  An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior , 2008, Proceedings of the National Academy of Sciences.

[13]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[14]  Erik M. Jorgensen,et al.  CAPS and syntaxin dock dense core vesicles to the plasma membrane in neurons , 2008, The Journal of cell biology.

[15]  W. Schafer,et al.  The Insulin/PI 3-Kinase Pathway Regulates Salt Chemotaxis Learning in Caenorhabditis elegans , 2006, Neuron.

[16]  D. R. Marks,et al.  Awake Intranasal Insulin Delivery Modifies Protein Complexes and Alters Memory, Anxiety, and Olfactory Behaviors , 2009, The Journal of Neuroscience.

[17]  Cori Bargmann,et al.  Odorant-selective genes and neurons mediate olfaction in C. elegans , 1993, Cell.

[18]  A. Basak,et al.  Role of pro-IGF-II processing by proprotein convertase 4 in human placental development. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Jing W. Wang,et al.  Presynaptic Facilitation by Neuropeptide Signaling Mediates Odor-Driven Food Search , 2011, Cell.

[20]  N. Seidah,et al.  Proprotein Convertases , 2011, Methods in Molecular Biology.

[21]  Cori Bargmann Beyond the connectome: How neuromodulators shape neural circuits , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[22]  A. Rose,et al.  A look at the Caenorhabditis elegans Kex2/Subtilisin‐like proprotein convertase family , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[23]  A. Ghazanfar,et al.  Is neocortex essentially multisensory? , 2006, Trends in Cognitive Sciences.

[24]  Michael A. Costa,et al.  Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. , 2001, Genes & development.

[25]  P. Duchamp-Viret,et al.  Modulation of spontaneous and odorant-evoked activity of rat olfactory sensory neurons by two anorectic peptides, insulin and leptin. , 2009, Journal of neurophysiology.

[26]  Koutarou D. Kimura,et al.  Temperature Sensing by an Olfactory Neuron in a Circuit Controlling Behavior of C. elegans , 2008, Science.

[27]  Sreekanth H. Chalasani,et al.  Neuropeptide signaling remodels chemosensory circuit composition in Caenorhabditis elegans , 2013, Nature Neuroscience.

[28]  E. Jorgensen,et al.  UNC-31 (CAPS) Is Required for Dense-Core Vesicle But Not Synaptic Vesicle Exocytosis in Caenorhabditis elegans , 2007, The Journal of Neuroscience.

[29]  M. Verhage,et al.  Differential release of amino acids, neuropeptides, and catecholamines from isolated nerve terminals , 1991, Neuron.

[30]  D. Coates,et al.  The neprilysin (NEP) family of zinc metalloendopeptidases: Genomics and function , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.