A Comparative Study of Adaptive Crossover Operators for Genetic Algorithms to Resolve the Traveling Salesman Problem

Genetic algorithm includes some parameters that should be adjusting so that the algorithm can provide positive results. Crossover operators play very important role by constructing competitive Genetic Algorithms (GAs). In this paper, the basic conceptual features and specific characteristics of various crossover operators in the context of the Traveling Salesman Problem (TSP) are discussed. The results of experimental comparison of more than six different crossover operators for the TSP are presented. The experiment results show that OX operator enables to achieve a better solutions than other operators tested.

[1]  Matteo Fischetti,et al.  An Additive Bounding Procedure for Combinatorial Optimization Problems , 1989, Oper. Res..

[2]  Novruz Allahverdi,et al.  Development a new mutation operator to solve the Traveling Salesman Problem by aid of Genetic Algorithms , 2011, Expert Syst. Appl..

[3]  D. E. Goldberg,et al.  Genetic Algorithm in Search , 1989 .

[4]  H. P. Williams,et al.  A Survey of Different Integer Programming Formulations of the Travelling Salesman Problem , 2007 .

[5]  Luís Gouveia,et al.  The asymmetric travelling salesman problem and a reformulation of the Miller-Tucker-Zemlin constraints , 1999, Eur. J. Oper. Res..

[6]  Z H Ahmed,et al.  GENETIC ALGORITHM FOR THE TRAVELING SALESMAN PROBLEM USING SEQUENTIAL CONSTRUCTIVE CROSSOVER , 2010 .

[7]  Pedro Larrañaga,et al.  Genetic Algorithms for the Travelling Salesman Problem: A Review of Representations and Operators , 1999, Artificial Intelligence Review.

[8]  Ravindra K. Ahuja,et al.  Network Flows , 2011 .

[9]  Vincent A. Cicirello,et al.  Non-wrapping order crossover: an order preserving crossover operator that respects absolute position , 2006, GECCO.

[10]  Nitin S. Choubey,et al.  A Novel Encoding Scheme for Traveling Tournament Problem using Genetic Algorithm , 2010 .

[11]  Sue Ellen Haupt,et al.  Artificial Intelligence Methods in the Environmental Sciences , 2008 .

[12]  José Carlos Príncipe,et al.  A Simulated Annealing Like Convergence Theory for the Simple Genetic Algorithm , 1991, ICGA.

[13]  Jacques Teghem,et al.  MEMOTS: a memetic algorithm integrating tabu search for combinatorial multiobjective optimization , 2008, RAIRO Oper. Res..

[14]  Stephen F. Smith,et al.  Modeling GA Performance for Control Parameter Optimization , 2000, GECCO.

[15]  Corso Elvezia,et al.  Ant colonies for the traveling salesman problem , 1997 .

[16]  Mansur R. Kabuka,et al.  A Boolean Neural Network Approach for the Traveling Salesman Problem , 1993, IEEE Trans. Computers.

[17]  David E. Goldberg,et al.  Alleles, loci and the traveling salesman problem , 1985 .

[18]  P Rhodes,et al.  Publication. , 1983, Encyclopedic Dictionary of Archaeology.

[19]  M Dorigo,et al.  Ant colonies for the travelling salesman problem. , 1997, Bio Systems.

[20]  P. Toth,et al.  Some New Branching and Bounding Criteria for the Asymmetric Travelling Salesman Problem , 1980 .

[21]  Gilbert Laporte,et al.  The vehicle routing problem: An overview of exact and approximate algorithms , 1992 .

[22]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[23]  Fred Glover,et al.  Artificial intelligence, heuristic frameworks and tabu search , 1990 .

[24]  André Langevin,et al.  CLASSIFICATION OF TRAVELING SALESMAN PROBLEM FORMULATIONS , 1988 .

[25]  Godfrey C. Onwubolu,et al.  Optimal path for automated drilling operations by a new heuristic approach using particle swarm optimization , 2004 .

[26]  S. Kirkpatrick,et al.  Configuration space analysis of travelling salesman problems , 1985 .

[27]  D. J. Smith,et al.  A Study of Permutation Crossover Operators on the Traveling Salesman Problem , 1987, ICGA.

[28]  Marco Furini,et al.  International Journal of Computer and Applications , 2010 .

[29]  Mitsuo Gen,et al.  Genetic algorithms and engineering design , 1997 .

[30]  Taïcir Loukil,et al.  The Pareto fitness genetic algorithm: Test function study , 2007, Eur. J. Oper. Res..

[31]  Jens Lysgaard Cluster based branching for the asymmetric traveling salesman problem , 1999, Eur. J. Oper. Res..

[32]  A. Gray,et al.  I. THE ORIGIN OF SPECIES BY MEANS OF NATURAL SELECTION , 1963 .

[33]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[34]  Alireza Arab Asadi,et al.  A New Hybrid Algorithm for Traveler Salesman Problem based on Genetic Algorithms and Artificial Neural Networks , 2011 .

[35]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[36]  P. Miliotis,et al.  Using cutting planes to solve the symmetric Travelling Salesman problem , 1978, Math. Program..

[37]  Sue Ellen Haupt,et al.  Environmental Science Models and Artificial Intelligence , 2009 .