A 3-approximation for the pathwidth of Halin graphs
暂无分享,去创建一个
[1] A. Brandstädt,et al. Graph Classes: A Survey , 1987 .
[2] Paul D. Seymour,et al. Monotonicity in Graph Searching , 1991, J. Algorithms.
[3] Paul D. Seymour,et al. Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.
[4] Nancy G. Kinnersley,et al. The Vertex Separation Number of a Graph equals its Path-Width , 1992, Inf. Process. Lett..
[5] Daniel Bienstock,et al. Graph Searching, Path-Width, Tree-Width and Related Problems (A Survey) , 1989, Reliability Of Computer And Communication Networks.
[6] Hans L. Bodlaender,et al. A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..
[7] Christos H. Papadimitriou,et al. The complexity of searching a graph , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).
[8] Konstantin Skodinis. Construction of linear tree-layouts which are optimal with respect to vertex separation in linear time , 2003, J. Algorithms.
[9] Gérard Cornuéjols,et al. Halin graphs and the travelling salesman problem , 1983, Math. Program..
[10] Ivan Hal Sudborough,et al. The Vertex Separation and Search Number of a Graph , 1994, Inf. Comput..
[11] Ton Kloks,et al. Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.
[12] Dimitrios M. Thilikos,et al. Algorithms and obstructions for linear-width and related search parameters , 2000, Discret. Appl. Math..
[13] Richard Krueger. Graph searching , 2005 .
[14] Paul D. Seymour,et al. Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.
[15] Robert E. Tarjan,et al. Efficient Planarity Testing , 1974, JACM.
[16] Fedor V. Fomin,et al. Approximation of pathwidth of outerplanar graphs , 2002, J. Algorithms.
[17] Rolf H. Möhring,et al. Graph Problems Related to Gate Matrix Layout and PLA Folding , 1990 .
[18] Atsushi Takahashi,et al. Minimal Forbidden Minors for the Family of Graphs with Proper-Path-Width at Most Two , 1995 .
[19] Michael A. Langston,et al. Approximation the Pathwidth of Outerplanar Graphs , 1998, Inf. Process. Lett..
[20] John A. Ellis,et al. Computing the vertex separation of unicyclic graphs , 2004, Inf. Comput..
[21] Rolf Niedermeier. TREE DECOMPOSITIONS OF GRAPHS , 2006 .
[22] P. Stadler. Minimum cycle bases of Halin graphs , 2003 .
[23] László Lovász,et al. Lengths of cycles in halin graphs , 1985, J. Graph Theory.
[24] Paul D. Seymour,et al. Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.
[25] R. Halin,et al. Über simpliziale Zerfällungen beliebiger (endlicher oder unendlicher) Graphen , 1964 .
[26] Kellogg S. Booth,et al. Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..
[27] H. Bodlaender. Planar graphs with bounded treewidth , 1988 .
[28] Christos H. Papadimitriou,et al. Interval graphs and seatching , 1985, Discret. Math..