A 3-approximation for the pathwidth of Halin graphs

We prove that the pathwidth of Halin graphs can be 3-approximated in linear time. Our approximation algorithms is based on a combinatorial result about respectful edge orderings of trees. Using this result we prove that the linear width of Halin graph is always at most three times the linear width of its skeleton.

[1]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[2]  Paul D. Seymour,et al.  Monotonicity in Graph Searching , 1991, J. Algorithms.

[3]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[4]  Nancy G. Kinnersley,et al.  The Vertex Separation Number of a Graph equals its Path-Width , 1992, Inf. Process. Lett..

[5]  Daniel Bienstock,et al.  Graph Searching, Path-Width, Tree-Width and Related Problems (A Survey) , 1989, Reliability Of Computer And Communication Networks.

[6]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[7]  Christos H. Papadimitriou,et al.  The complexity of searching a graph , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[8]  Konstantin Skodinis Construction of linear tree-layouts which are optimal with respect to vertex separation in linear time , 2003, J. Algorithms.

[9]  Gérard Cornuéjols,et al.  Halin graphs and the travelling salesman problem , 1983, Math. Program..

[10]  Ivan Hal Sudborough,et al.  The Vertex Separation and Search Number of a Graph , 1994, Inf. Comput..

[11]  Ton Kloks,et al.  Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.

[12]  Dimitrios M. Thilikos,et al.  Algorithms and obstructions for linear-width and related search parameters , 2000, Discret. Appl. Math..

[13]  Richard Krueger Graph searching , 2005 .

[14]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[15]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[16]  Fedor V. Fomin,et al.  Approximation of pathwidth of outerplanar graphs , 2002, J. Algorithms.

[17]  Rolf H. Möhring,et al.  Graph Problems Related to Gate Matrix Layout and PLA Folding , 1990 .

[18]  Atsushi Takahashi,et al.  Minimal Forbidden Minors for the Family of Graphs with Proper-Path-Width at Most Two , 1995 .

[19]  Michael A. Langston,et al.  Approximation the Pathwidth of Outerplanar Graphs , 1998, Inf. Process. Lett..

[20]  John A. Ellis,et al.  Computing the vertex separation of unicyclic graphs , 2004, Inf. Comput..

[21]  Rolf Niedermeier TREE DECOMPOSITIONS OF GRAPHS , 2006 .

[22]  P. Stadler Minimum cycle bases of Halin graphs , 2003 .

[23]  László Lovász,et al.  Lengths of cycles in halin graphs , 1985, J. Graph Theory.

[24]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[25]  R. Halin,et al.  Über simpliziale Zerfällungen beliebiger (endlicher oder unendlicher) Graphen , 1964 .

[26]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[27]  H. Bodlaender Planar graphs with bounded treewidth , 1988 .

[28]  Christos H. Papadimitriou,et al.  Interval graphs and seatching , 1985, Discret. Math..