Electrodynamic response and stability of molecular crystals

We show that electrodynamic dipolar interactions, responsible for long-range fluctuations in matter, play a significant role in the stability of molecular crystals. Density functional theory calculations with van der Waals interactions determined from a semilocal “atom-in-a-molecule” model result in a large overestimation of the dielectric constants and sublimation enthalpies for polyacene crystals from naphthalene to pentacene, whereas an accurate treatment of nonlocal electrodynamic response leads to an agreement with the measured values for both quantities. Our findings suggest that collective response effects play a substantial role not only for optical excitations, but also for cohesive properties of noncovalently bound molecular crystals.