Training recurrent neural networks: why and how? An illustration in dynamical process modeling
暂无分享,去创建一个
Pierre Roussel-Ragot | Léon Personnaz | Gérard Dreyfus | Dominique Urbani | Olivier Nerrand | L. Personnaz | G. Dreyfus | O. Nerrand | P. Roussel-Ragot | D. Urbani
[1] P. Wolfe. Convergence Conditions for Ascent Methods. II , 1969 .
[2] P. Kumar,et al. Theory and practice of recursive identification , 1985, IEEE Transactions on Automatic Control.
[3] William H. Press,et al. Numerical recipes in C. The art of scientific computing , 1987 .
[4] J. E. Glynn,et al. Numerical Recipes: The Art of Scientific Computing , 1989 .
[5] C. Lee Giles,et al. Higher Order Recurrent Networks and Grammatical Inference , 1989, NIPS.
[6] Sheng Chen,et al. Representations of non-linear systems: the NARMAX model , 1989 .
[7] 2 - Réseaux de neurones pour le filtrage non linéaire adaptatif , 1991 .
[8] L. Personnaz,et al. Adaptive training of feedback neural networks for non-linear filtering , 1992, Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop.
[9] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[10] Pierre Roussel-Ragot,et al. Neural Networks and Nonlinear Adaptive Filtering: Unifying Concepts and New Algorithms , 1993, Neural Computation.
[11] Christophe Vignat. Apprentissage d'evolutions temporelles : comparaison des approches filtrage adaptatif et reseaux de neurones formels. convergence des approches filtrage adaptatif et reseaux de neurones formels. cas des sytemes non lineaires boucles , 1993 .