Effect of orientation and loading rate on the incipient behavior of Ti60(AlCrVNb)40 medium entropy alloy

[1]  S. Mukherjee,et al.  Activation Volume and Energy for Dislocation Nucleation in Multi-Principal Element Alloys , 2019, Metals.

[2]  Jian Xu,et al.  Incipient plasticity and activation volume of dislocation nucleation for TiZrNbTaMo high-entropy alloys characterized by nanoindentation , 2019, Journal of Materials Science & Technology.

[3]  A. Gerlich,et al.  Nano-indentation behavior of layered ultra-fine grained AA8006 aluminum alloy and AA8006-B4C nanostructured nanocomposite produced by accumulative fold forging process , 2019, Materials Science and Engineering: A.

[4]  Jiesheng Han,et al.  A promising new high temperature self-lubricating material: CoCrFeNiS0.5 high entropy alloy , 2018, Materials Science and Engineering: A.

[5]  J. Ruzic,et al.  Mo segregation and distribution in Ti–Mo alloy investigated using nanoindentation , 2018 .

[6]  R. B. Nair,et al.  Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy. , 2018, Ultrasonics sonochemistry.

[7]  S. Hong,et al.  Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process , 2018 .

[8]  C. Motz,et al.  Vacancy effects on the mechanical behavior of B2-FeAl intermetallics , 2018 .

[9]  H. Zbib,et al.  Modeling and Characterization of Grain Boundaries and Slip Transmission in Dislocation Density-Based Crystal Plasticity , 2017 .

[10]  T. Nieh,et al.  Dislocation nucleation during nanoindentation in a body-centered cubic TiZrHfNb high-entropy alloy , 2017 .

[11]  Wei Chen,et al.  Effects of rolling temperature and subsequent annealing on mechanical properties of ultrafine-grained Cu–Zn–Si alloy , 2015 .

[12]  R. Kositski,et al.  Depinning-controlled plastic deformation during nanoindentation of BCC iron thin films and nanoparticles , 2015 .

[13]  T. Nieh,et al.  Incipient plasticity and dislocation nucleation in body-centered cubic chromium , 2014 .

[14]  Karin A. Dahmen,et al.  Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems , 2013 .

[15]  T. Nieh,et al.  Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy , 2013 .

[16]  D. Bahr,et al.  The effect of crystal orientation on the stochastic behavior of dislocation nucleation and multiplication during nanoindentation , 2013 .

[17]  H. Zbib,et al.  Crystallographic orientation and indenter radius effects on the onset of plasticity during nanoindentation , 2012 .

[18]  Chuan Zhang,et al.  Computational Thermodynamics Aided High-Entropy Alloy Design , 2012, JOM.

[19]  C. Schuh,et al.  Effect of solid solution elements on nanoindentation hardness, rate dependence, and incipient plasticity in fine grained magnesium alloys , 2011 .

[20]  Yanfei Gao,et al.  Indentation Schmid factor and orientation dependence of nanoindentation pop-in behavior of NiAl single crystals , 2011 .

[21]  C. Woodward,et al.  Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Postprint) , 2011 .

[22]  K. Oh,et al.  Investigation of strain-induced martensitic transformation in metastable austenite using nanoindentation , 2010 .

[23]  P. Liaw,et al.  Solid‐Solution Phase Formation Rules for Multi‐component Alloys , 2008 .

[24]  G. Pharr,et al.  Strength Differences Arising from Homogeneous Versus Heterogeneous Dislocation Nucleation , 2008 .

[25]  D. Bahr,et al.  Dislocation Nucleation and Source Activation during Nanoindentation Yield Points , 2007 .

[26]  C. Schuh,et al.  Determining the activation energy and volume for the onset of plasticity during nanoindentation , 2006 .

[27]  C. Schuh,et al.  Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments , 2005, Nature materials.

[28]  G. Zheng,et al.  Size dependence of incipient dislocation plasticity in Ni3Al. , 2005, Physical review letters.

[29]  A. Ngan,et al.  Time-dependent incipient plasticity in Ni_3Al as observed in nanoindentation , 2005 .

[30]  J. Kohout,et al.  Plastic deformation of nickel under high hydrostatic pressure , 2004 .

[31]  Sidney Yip,et al.  Ideal shear strain of metals and ceramics , 2004 .

[32]  C. Schuh,et al.  Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation , 2004 .

[33]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[34]  K. Lu,et al.  Deformation behavior of Ni3Al single crystals during nanoindentation , 2003 .

[35]  T. Nieh,et al.  Rate Dependence of Serrated Flow During Nanoindentation of a Bulk Metallic Glass , 2002 .

[36]  D. Bahr,et al.  Non-linear deformation mechanisms during nanoindentation , 1998 .

[37]  J. Houston,et al.  Nanomechanical properties of Au (111), (001), and (110) surfaces , 1998 .

[38]  Peter M. Anderson,et al.  Indentation induced dislocation nucleation: The initial yield point , 1996 .

[39]  T. Page,et al.  The deformation behavior of ceramic crystals subjected to very low load (nano)indentations , 1992 .

[40]  Matake Tomokazu,et al.  Pop-in behavior induced by interaction of cracks , 1977 .

[41]  W. Williams,et al.  Elastic Deformation, Plastic Flow, and Dislocations in Single Crystals of Titanium Carbide , 1962 .