Exploring the isoform selectivity of TGX-221 related pyrido[1,2-a]pyrimidinone-based Class IA PI 3-kinase inhibitors: synthesis, biological evaluation and molecular modelling.

[1]  S. Green,et al.  Discovery of (R)-8-(1-(3,5-difluorophenylamino)ethyl)-N,N-dimethyl-2-morpholino-4-oxo-4H-chromene-6-carboxamide (AZD8186): a potent and selective inhibitor of PI3Kβ and PI3Kδ for the treatment of PTEN-deficient cancers. , 2015, Journal of medicinal chemistry.

[2]  S. Green,et al.  Discovery of 9-(1-anilinoethyl)-2-morpholino-4-oxo-pyrido[1,2-a]pyrimidine-7-carboxamides as PI3Kβ/δ inhibitors for the treatment of PTEN-deficient tumours. , 2014, Bioorganic & medicinal chemistry letters.

[3]  P. Shepherd,et al.  Structure, function and inhibition of the phosphoinositide 3-kinase p110α enzyme. , 2014, Biochemical Society transactions.

[4]  Jean-Pierre Marquette,et al.  Discovery and optimization of pyrimidone indoline amide PI3Kβ inhibitors for the treatment of phosphatase and tensin homologue (PTEN)-deficient cancers. , 2014, Journal of medicinal chemistry.

[5]  Haiyan Wu,et al.  Characterization of a Tumor-Associated Activating Mutation of the p110β PI 3-Kinase , 2013, PloS one.

[6]  J. Backer,et al.  Novel approaches to inhibitor design for the p110β phosphoinositide 3-kinase. , 2013, Trends in pharmacological sciences.

[7]  Michelle S. Miller,et al.  L-Aminoacyl-triazine derivatives are isoform-selective PI3Kβ inhibitors that target non-conserved Asp862 of PI3Kβ , 2013, ACS medicinal chemistry letters.

[8]  Michelle S. Miller,et al.  Mechanisms of PI3Kβ-selective inhibition revealed by reciprocal mutagenesis. , 2013, ACS chemical biology.

[9]  J. Luengo,et al.  [3a,4]-Dihydropyrazolo[1,5a]pyrimidines: Novel, Potent, and Selective Phosphatidylinositol-3-kinase β Inhibitors. , 2013, ACS medicinal chemistry letters.

[10]  A. Wallberg,et al.  Discovery of 4-morpholino-pyrimidin-6-one and 4-morpholino-pyrimidin-2-one-containing Phosphoinositide 3-kinase (PI3K) p110β isoform inhibitors through structure-based fragment optimisation. , 2012, Bioorganic & medicinal chemistry letters.

[11]  B. Kull,et al.  Human target validation of phosphoinositide 3‐kinase (PI3K)β: effects on platelets and insulin sensitivity, using AZD6482 a novel PI3Kβ inhibitor , 2012, Journal of thrombosis and haemostasis : JTH.

[12]  K. Kinzler,et al.  Definition of the binding mode of a new class of phosphoinositide 3-kinase α-selective inhibitors using in vitro mutagenesis of non-conserved amino acids and kinetic analysis. , 2012, The Biochemical journal.

[13]  J. Nicolas,et al.  Discovery and optimization of new benzimidazole- and benzoxazole-pyrimidone selective PI3Kβ inhibitors for the treatment of phosphatase and TENsin homologue (PTEN)-deficient cancers. , 2012, Journal of medicinal chemistry.

[14]  N. Gray,et al.  Functional characterization of an isoform-selective inhibitor of PI3K-p110β as a potential anticancer agent. , 2012, Cancer discovery.

[15]  J. Greshock,et al.  Abstract 1752: A phase I/IIa, first time in human, open-label dose-escalation study of GSK2636771 in subjects with advanced solid tumors with PTEN deficiency , 2012 .

[16]  J. F. Mack,et al.  Synthesis and structure-activity relationships of imidazo[1,2-a]pyrimidin-5(1H)-ones as a novel series of beta isoform selective phosphatidylinositol 3-kinase inhibitors. , 2012, Bioorganic & medicinal chemistry letters.

[17]  C. Rommel,et al.  PI3Kδ inhibitors in cancer: rationale and serendipity merge in the clinic. , 2011, Cancer discovery.

[18]  Roger L. Williams,et al.  Regulation of lipid binding underlies the activation mechanism of class IA PI3-kinases , 2011, Oncogene.

[19]  W. Denny,et al.  A drug targeting only p110α can block phosphoinositide 3-kinase signalling and tumour growth in certain cell types , 2011, The Biochemical journal.

[20]  Sanjay Garg,et al.  Evaluation of a crystalline nanosuspension: polymorphism, process induced transformation and in vivo studies. , 2011, International journal of pharmaceutics.

[21]  Andreas Prlic,et al.  Pre-calculated protein structure alignments at the RCSB PDB website , 2010, Bioinform..

[22]  Yi Liu,et al.  The p110δ crystal structure uncovers mechanisms for selectivity and potency of novel PI3K inhibitors , 2009, Nature chemical biology.

[23]  Roger L. Williams,et al.  Form and flexibility in phosphoinositide 3-kinases. , 2009, Biochemical Society transactions.

[24]  K. Kinzler,et al.  Dissecting isoform selectivity of PI3K inhibitors: the role of non-conserved residues in the catalytic pocket. , 2008, The Biochemical journal.

[25]  Christian Cole,et al.  The Jpred 3 secondary structure prediction server , 2008, Nucleic Acids Res..

[26]  Bert Vogelstein,et al.  The Structure of a Human p110α/p85α Complex Elucidates the Effects of Oncogenic PI3Kα Mutations , 2007, Science.

[27]  Radha Akella,et al.  Substrate and docking interactions in serine/threonine protein kinases. , 2007, Chemical reviews.

[28]  Shaun P Jackson,et al.  Evidence for functional redundancy of class IA PI3K isoforms in insulin signalling. , 2007, The Biochemical journal.

[29]  Robbie Loewith,et al.  A Pharmacological Map of the PI3-K Family Defines a Role for p110α in Insulin Signaling , 2006, Cell.

[30]  P. Vogt,et al.  PI 3-Kinases: Hidden Potentials Revealed , 2006, Cell cycle.

[31]  Y. Samuels,et al.  Oncogenic PI3K and its role in cancer , 2006, Current opinion in oncology.

[32]  A. Robertson,et al.  PI 3-kinase p110β: a new target for antithrombotic therapy , 2005, Nature Medicine.

[33]  J. Cid,et al.  Potassium iodide catalysed monoalkylation of anilines under microwave irradiation , 2004 .

[34]  J. McCubrey,et al.  Phosphatidylinositol 3′-Kinase Activation Leads to Multidrug Resistance Protein-1 Expression and Subsequent Chemoresistance in Advanced Prostate Cancer Cells , 2004, Cancer Research.

[35]  Peter J. Alaimo,et al.  Isoform-specific phosphoinositide 3-kinase inhibitors from an arylmorpholine scaffold. , 2004, Bioorganic & medicinal chemistry.

[36]  Márton Varga,et al.  A novel orally active inhibitor of HLE. , 2003, European journal of medicinal chemistry.

[37]  H. Berman,et al.  Electronic Reprint Biological Crystallography the Protein Data Bank Biological Crystallography the Protein Data Bank , 2022 .

[38]  J. Hawkinson,et al.  Synthesis and SAR of 5-, 6-, 7- and 8-aza analogues of 3-aryl-4-hydroxyquinolin-2(1H)-one as NMDA/glycine site antagonists. , 2001, Bioorganic & medicinal chemistry.

[39]  C. Berrie Phosphoinositide 3-kinase inhibition in cancer treatment , 2001, Expert opinion on investigational drugs.

[40]  R. Taylor,et al.  In situ oxidation-imine formation-reduction routes from alcohols to amines. , 2001, Organic letters.

[41]  Roger L. Williams,et al.  Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. , 2000, Molecular cell.

[42]  M. Waterfield,et al.  PI3-kinase inhibition: a target for drug development? , 2000, Molecular medicine today.

[43]  G J Barton,et al.  Application of multiple sequence alignment profiles to improve protein secondary structure prediction , 2000, Proteins.

[44]  Christian Ried,et al.  Structural insights into phosphoinositide 3-kinase catalysis and signalling , 1999, Nature.

[45]  P E Bourne,et al.  Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. , 1998, Protein engineering.

[46]  K. Siddle,et al.  Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. , 1998, The Biochemical journal.

[47]  M. Zvelebil,et al.  Cloning of a human phosphoinositide 3-kinase with a C2 domain that displays reduced sensitivity to the inhibitor wortmannin. , 1997, The Biochemical journal.

[48]  B. Neustadt Facile preparation of N-(sulfonyl)carbamates , 1994 .

[49]  Claire L. Lill,et al.  Novel pyrazolo[1,5-a]pyridines as p110α-selective PI3 kinase inhibitors: Exploring the benzenesulfonohydrazide SAR. , 2012, Bioorganic & medicinal chemistry.

[50]  Claire L. Lill,et al.  Discovery of pyrazolo[1,5-a]pyridines as p110α-selective PI3 kinase inhibitors. , 2012, Bioorganic & medicinal chemistry.

[51]  Jack Snoeyink,et al.  Nucleic Acids Research Advance Access published April 22, 2007 MolProbity: all-atom contacts and structure validation for proteins and nucleic acids , 2007 .

[52]  R. Isaacs,et al.  Estimation of radiation-induced interphase cell death in cultures of human tumor material and in cell lines. , 2004, Oncology Research.

[53]  M. Waterfield,et al.  Synthesis and function of 3-phosphorylated inositol lipids. , 2001, Annual review of biochemistry.

[54]  R. Glen,et al.  Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. , 1995, Journal of molecular biology.