Cell Cycle Specific Cancer Chemotherapy for Homogeneous Tumors

[1]  Urszula Ledzewicz,et al.  On the MTD paradigm and optimal control for multi-drug cancer chemotherapy. , 2013, Mathematical biosciences and engineering : MBE.

[2]  H. Schättler,et al.  Geometric Optimal Control , 2012 .

[3]  David L. Elliott,et al.  Bilinear Control Systems , 2009 .

[4]  Eva Forssell-Aronsson,et al.  Specific growth rate versus doubling time for quantitative characterization of tumor growth rate. , 2007, Cancer research.

[5]  M. Chyba,et al.  Singular Trajectories and Their Role in Control Theory , 2003, IEEE Transactions on Automatic Control.

[6]  R. Janavicius,et al.  A method to estimate cell cycle time and growth fraction using bromodeoxyuridine-flow cytometry data from a single sample , 2005, BMC Cancer.

[7]  Urszula Ledzewicz,et al.  OPTIMAL CONTROL FOR A CLASS OF COMPARTMENTAL MODELS IN CANCER CHEMOTHERAPY , 2003 .

[8]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[9]  R Simon,et al.  Clinical trial designs for cytostatic agents: are new approaches needed? , 2001, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[10]  John Carl Panetta,et al.  Molecular biology of breast cancer metastasis: The use of mathematical models to determine relapse and to predict response to chemotherapy in breast cancer , 2000, Breast Cancer Research.

[11]  John Carl Panetta,et al.  Optimal Control Applied to Cell-Cycle-Specific Cancer Chemotherapy , 2000, SIAM J. Appl. Math..

[12]  Jaroslaw Smieja,et al.  Qualitative analysis of controlled drug resistance model - inverse Laplace and and semigroup approach , 1999 .

[13]  K. Luzzi,et al.  Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. , 1998, The American journal of pathology.

[14]  Malcolm R. Alison,et al.  Understanding Cancer: From Basic Science to Clinical Practice , 1997 .

[15]  A Swierniak,et al.  Optimal control problems arising in cell‐cycle‐specific cancer chemotherapy , 1996, Cell proliferation.

[16]  Jaroslaw Smieja,et al.  Cell Cycle as an Object of Control , 1995 .

[17]  Lars Holmgren,et al.  Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression , 1995, Nature Medicine.

[18]  Andrzej Swierniak,et al.  Singularity of optimal control in some problems related to optimal chemotherapy , 1994 .

[19]  Elihu H. Estey,et al.  Cytokinetic Resistance in Acute Leukemia: Recombinant Human Granulocyte Colony-Stimulating Factor, Granulocyte Macrophage Colony-Stimulating Factor, Interleukin-3 and Stem Cell Factor Effects In Vitro and Clinical Trials with Granulocyte Macrophage Colony-Stimulating Factor , 1992 .

[20]  M. Andreeff,et al.  Kinetic rationale for cytokine-induced recruitment of myeloblastic leukemia followed by cycle-specific chemotherapy in vitro. , 1990, Leukemia.

[21]  M. Brizzi,et al.  Induction of proliferation of acute myeloblastic leukemia (AML) cells with hemopoietic growth factors. , 1988, Leukemia research.

[22]  A. Hagenbeek,et al.  Enhanced tumor load reduction after chemotherapy induced recruitment and synchronization in a slowly growing rat leukemia model (BNML) for human acute myelocytic leukemia. , 1984, Leukemia research.

[23]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[24]  S. Murphy,et al.  Evidence for recruitment and synchronization in leukemia and solid tumors. , 1976, Cancer treatment reports.

[25]  B. Lampkin,et al.  Synchronization and recruitment in acute leukemia. , 1971, The Journal of clinical investigation.