Cell Cycle Specific Cancer Chemotherapy for Homogeneous Tumors
暂无分享,去创建一个
[1] Urszula Ledzewicz,et al. On the MTD paradigm and optimal control for multi-drug cancer chemotherapy. , 2013, Mathematical biosciences and engineering : MBE.
[2] H. Schättler,et al. Geometric Optimal Control , 2012 .
[3] David L. Elliott,et al. Bilinear Control Systems , 2009 .
[4] Eva Forssell-Aronsson,et al. Specific growth rate versus doubling time for quantitative characterization of tumor growth rate. , 2007, Cancer research.
[5] M. Chyba,et al. Singular Trajectories and Their Role in Control Theory , 2003, IEEE Transactions on Automatic Control.
[6] R. Janavicius,et al. A method to estimate cell cycle time and growth fraction using bromodeoxyuridine-flow cytometry data from a single sample , 2005, BMC Cancer.
[7] Urszula Ledzewicz,et al. OPTIMAL CONTROL FOR A CLASS OF COMPARTMENTAL MODELS IN CANCER CHEMOTHERAPY , 2003 .
[8] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[9] R Simon,et al. Clinical trial designs for cytostatic agents: are new approaches needed? , 2001, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.
[10] John Carl Panetta,et al. Molecular biology of breast cancer metastasis: The use of mathematical models to determine relapse and to predict response to chemotherapy in breast cancer , 2000, Breast Cancer Research.
[11] John Carl Panetta,et al. Optimal Control Applied to Cell-Cycle-Specific Cancer Chemotherapy , 2000, SIAM J. Appl. Math..
[12] Jaroslaw Smieja,et al. Qualitative analysis of controlled drug resistance model - inverse Laplace and and semigroup approach , 1999 .
[13] K. Luzzi,et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. , 1998, The American journal of pathology.
[14] Malcolm R. Alison,et al. Understanding Cancer: From Basic Science to Clinical Practice , 1997 .
[15] A Swierniak,et al. Optimal control problems arising in cell‐cycle‐specific cancer chemotherapy , 1996, Cell proliferation.
[16] Jaroslaw Smieja,et al. Cell Cycle as an Object of Control , 1995 .
[17] Lars Holmgren,et al. Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression , 1995, Nature Medicine.
[18] Andrzej Swierniak,et al. Singularity of optimal control in some problems related to optimal chemotherapy , 1994 .
[19] Elihu H. Estey,et al. Cytokinetic Resistance in Acute Leukemia: Recombinant Human Granulocyte Colony-Stimulating Factor, Granulocyte Macrophage Colony-Stimulating Factor, Interleukin-3 and Stem Cell Factor Effects In Vitro and Clinical Trials with Granulocyte Macrophage Colony-Stimulating Factor , 1992 .
[20] M. Andreeff,et al. Kinetic rationale for cytokine-induced recruitment of myeloblastic leukemia followed by cycle-specific chemotherapy in vitro. , 1990, Leukemia.
[21] M. Brizzi,et al. Induction of proliferation of acute myeloblastic leukemia (AML) cells with hemopoietic growth factors. , 1988, Leukemia research.
[22] A. Hagenbeek,et al. Enhanced tumor load reduction after chemotherapy induced recruitment and synchronization in a slowly growing rat leukemia model (BNML) for human acute myelocytic leukemia. , 1984, Leukemia research.
[23] Lamberto Cesari,et al. Optimization-Theory And Applications , 1983 .
[24] S. Murphy,et al. Evidence for recruitment and synchronization in leukemia and solid tumors. , 1976, Cancer treatment reports.
[25] B. Lampkin,et al. Synchronization and recruitment in acute leukemia. , 1971, The Journal of clinical investigation.