Pericellular hydrogel/nanonets inhibit cancer cells.

Fibrils formed by proteins are vital components for cells. However, selective formation of xenogenous nanofibrils of small molecules on mammalian cells has yet to be observed. Here we report an unexpected observation of hydrogel/nanonets of a small D-peptide derivative in pericellular space. Surface and secretory phosphatases dephosphorylate a precursor of a hydrogelator to trigger the self-assembly of the hydrogelator and to result in pericellular hydrogel/nanonets selectively around the cancer cells that overexpress phosphatases. Cell-based assays confirm that the pericellular hydrogel/nanonets block cellular mass exchange to induce apoptosis of cancer cells, including multidrug-resistance (MDR) cancer cells, MES-SA/Dx5. Pericellular hydrogel/nanonets of small molecules to exhibit distinct functions illustrates a fundamentally new way to engineer molecular assemblies spatiotemporally in cellular microenvironment for inhibiting cancer cell growth and even metastasis.

[1]  Jean-Marie Lehn,et al.  Toward Self-Organization and Complex Matter , 2002, Science.

[2]  Bing Xu,et al.  D-amino acids boost the selectivity and confer supramolecular hydrogels of a nonsteroidal anti-inflammatory drug (NSAID). , 2013, Journal of the American Chemical Society.

[3]  A. Eychmüller,et al.  Enzyme-encapsulating quantum dot hydrogels and xerogels as biosensors: multifunctional platforms for both biocatalysis and fluorescent probing. , 2013, Angewandte Chemie.

[4]  Rein V Ulijn,et al.  Enzyme-assisted self-assembly under thermodynamic control. , 2009, Nature nanotechnology.

[5]  W. Binder,et al.  Selbstorganisation von Fasern und Fibrillen , 2006 .

[6]  F. Marincola,et al.  Commensal Bacteria Control Cancer Response to Therapy by Modulating the Tumor Microenvironment , 2013, Science.

[7]  Bing Xu,et al.  Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. , 2002, Journal of the American Chemical Society.

[8]  N. Elson,et al.  Production of fetal-like alkaline phosphatase by HeLa cells , 1969, Biochemical Genetics.

[9]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[10]  Rein V Ulijn,et al.  Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. , 2006, Journal of the American Chemical Society.

[11]  H. Gu,et al.  Enzymatic Formation of Supramolecular Hydrogels , 2004 .

[12]  A. Hamilton,et al.  Water gelation by small organic molecules. , 2004, Chemical reviews.

[13]  Stephen Mann,et al.  Life as a nanoscale phenomenon. , 2008, Angewandte Chemie.

[14]  Akira Harada,et al.  Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. , 2010, Angewandte Chemie.

[15]  Bing Xu,et al.  Self-assembled multivalent vancomycin on cell surfaces against vancomycin-resistant enterococci (VRE). , 2003, Chemical communications.

[16]  D. Lauffenburger,et al.  Cell Migration: A Physically Integrated Molecular Process , 1996, Cell.

[17]  Bing Xu,et al.  Disruption of the dynamics of microtubules and selective inhibition of glioblastoma cells by nanofibers of small hydrophobic molecules. , 2013, Angewandte Chemie.

[18]  P. Parsons,et al.  Antitumor activity of 3-ingenyl angelate: plasma membrane and mitochondrial disruption and necrotic cell death. , 2004, Cancer research.

[19]  M. Pazgier,et al.  Human α-Defensin 6 Promotes Mucosal Innate Immunity Through Self-Assembled Peptide Nanonets , 2012, Science.

[20]  Shoji Takeuchi,et al.  Meter-long and robust supramolecular strands encapsulated in hydrogel jackets. , 2012, Angewandte Chemie.

[21]  A. Patil,et al.  Cytoskeletal-like supramolecular assembly and nanoparticle-based motors in a model protocell. , 2011, Angewandte Chemie.

[22]  J Kapuscinski,et al.  DAPI: a DNA-specific fluorescent probe. , 1995, Biotechnic & histochemistry : official publication of the Biological Stain Commission.

[23]  W. Fishman,et al.  Immunology and Biochemistry of Regan Isoenzyme of Alkaline Phosphatase in Human Cancer , 1968, Nature.

[24]  J. Siegfried,et al.  Flow cytometric analysis of human uterine sarcomas and cell lines. , 1987, Cancer research.

[25]  Feihe Huang,et al.  Self-healing supramolecular gels formed by crown ether based host-guest interactions. , 2012, Angewandte Chemie.

[26]  A. Persikov,et al.  Unstable molecules form stable tissues , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Bing Xu,et al.  In vitro and in vivo enzymatic formation of supramolecular hydrogels based on self-assembled nanofibers of a beta-amino acid derivative. , 2007, Small.

[28]  Stephen Mann Das Leben als ein nanoskaliges Phänomen , 2008 .

[29]  D. Tai,et al.  Candidate Serological Biomarkers for Cancer Identified from the Secretomes of 23 Cancer Cell Lines and the Human Protein Atlas* , 2010, Molecular & Cellular Proteomics.

[30]  W. Binder,et al.  Self-assembly of fibers and fibrils. , 2006, Angewandte Chemie.

[31]  Jie Zhou,et al.  Dephosphorylation of D-peptide derivatives to form biofunctional, supramolecular nanofibers/hydrogels and their potential applications for intracellular imaging and intratumoral chemotherapy. , 2013, Journal of the American Chemical Society.

[32]  M. Humphries,et al.  Cell adhesion assays. , 2009, Methods in molecular biology.

[33]  Bing Xu,et al.  Enzymatic hydrogelation of small molecules. , 2008, Accounts of chemical research.