Generalized Symplectic Action and Symplectomorphism Groups of Coadjoint Orbits

[1]  A. Viña Symplectic Action Around Loops In Ham(M) , 2004 .

[2]  S. Tolman,et al.  Topological properties of Hamiltonian circle actions , 2004, math/0404338.

[3]  W. G. Ritter Geometric Quantization , 2002, math-ph/0208008.

[4]  D. Mcduff Lectures on Groups of Symplectomorphisms , 2002, math/0201032.

[5]  Octogon staff Book reviews: The geometry of the group of symplectic diffeomorphisms by Polterovich, L. , 2001 .

[6]  A. Viña Hamiltonian symplectomorphisms and the Berry phase , 2000, math/0009206.

[7]  M. Schwarz On the action spectrum for closed symplectically aspherical manifolds Pacific J , 2000 .

[8]  M. Abreu,et al.  Topology of symplectomorphism groups of rational ruled surfaces , 1999, math/9910057.

[9]  D. Mcduff Quantum Homology of fibrations over $S^2$ , 1999, math/9905092.

[10]  M. Abreu Topology of symplectomorphism groups of S2×S2 , 1997 .

[11]  L. Polterovich,et al.  Topological rigidity of Hamiltonian loops and quantum homology , 1997, dg-ga/9710017.

[12]  P. Seidel $ \pi _1 $ of Symplectic Automorphism Groups and Invertibles in Quantum Homology Rings , 1995, dg-ga/9511011.

[13]  Dusa McDuff,et al.  Introduction to Symplectic Topology , 1995 .

[14]  A. Weinstein Cohomology of symplectomorphism groups and critical values of hamiltonians , 1989 .

[15]  M. Gromov Pseudo holomorphic curves in symplectic manifolds , 1985 .

[16]  J. Sniatycki Geometric quantization and quantum mechanics , 1980 .

[17]  A. Kirillov Elements of the theory of representations , 1976 .

[18]  B. Kostant Quantization and unitary representations , 1970 .

[19]  James Eells,et al.  A fibre bundle description of Teichmüller theory , 1969 .