Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements
暂无分享,去创建一个
Lei Zhu | A. Scaife | P. Koch | A. Whitworth | N. Peretto | G. Fuller | P. Andre' | H. Chen | T. Onaka | M. Tamura | Sang-Sung Lee | D. Byun | D. Johnstone | P. Bastien | Jongsoo Kim | G. Savini | J. Francesco | B. Matthews | Di Li | P. Friberg | M. Seta | J. Kwon | T. Nagata | Tsuyoshi Inoue | W. Chen | K. Kawabata | S. Eyres | S. Falle | M. Griffin | W. Holland | J. Greaves | G. Moriarty-Schieven | T. Hasegawa | D. Ward-Thompson | J. Hatchell | A. Chrysostomou | J. Fiege | R. Friesen | S. Graves | M. Houde | J. Kirk | J. Richer | K. Lacaille | C. Dowell | A. Kataoka | R. Rao | M. Rawlings | H. Parsons | Jia‐Wei Wang | L. Qian | K. Qiu | T. Ching | Jinghua Yuan | A. Rigby | Jianjun Zhou | Da-lei Li | Miju Kang | Il-Gyo Jeong | H. Nakanishi | Jeong-Eun Lee | Kee-Tae Kim | Hongchi Wang | Tie Liu | Ji-hyun Kang | S. Inutsuka | F. Kemper | Minho Choi | Sung-ju Kang | Jungyeon Cho | H. Yoo | D. Berry | T. Pyo | F. Nakamura | S. Loo | D. Arzoumanian | Guoyin Zhang | Junhao Liu | Y. Doi | J. Robitaille | Chuan-Peng Zhang | Hua-b. Li | Sheng-Yuan Liu | S. Lai | A. Soam | C. Lee | Ya-Wen Tang | Gwanjeong Kim | S. Mairs | Shinyoung Kim | K. Pattle | W. Kwon | E. Chung | A. Pon | S. Hayashi | M. Matsumura | S. Sadavoy | K. Tomisaka | Y. Tsukamoto | Hsi-Wei Yen | N. Ohashi | K. Iwasaki | Yusuke Aso | H. Shinnaga | S. Coudé | E. Drabek-Maunder | T. Gledhill | Mi-Ryang Kim | R. Furuya | C. Eswaraiah | K. Kim | A. Lyo | B. Retter | Mike Chen | I. Han | Hyeseung Lee | Thiem C. Hoang | T. Zenko | Masato I. N. Kobayashi | E. Franzmann | Hong-Li Liu | Q. Gu | Yoshihiro Kanamori | H. Saito | J. Hwang | T. Inoue | S. Lai | Hongli Liu | Chuan-peng Zhang | W. Chen | Ya-wen Tang | P. Andre'
[1] Lei Zhu,et al. A First Look at BISTRO Observations of the ρ Oph-A core , 2018, 1804.09313.
[2] P. Koch,et al. Polarization Properties and Magnetic Field Structures in the High-mass Star-forming Region W51 Observed with ALMA , 2018, 1801.08264.
[3] P. Koch,et al. The JCMT BISTRO Survey: The Magnetic Field Strength in the Orion A Filament , 2017, 1707.05269.
[4] Martin Houde,et al. ALMA Observations of Dust Polarization and Molecular Line Emission from the Class 0 Protostellar Source Serpens SMM1 , 2017, 1707.03827.
[5] A. Goodman,et al. Unveiling the Role of the Magnetic Field at the Smallest Scales of Star Formation , 2017, 1706.03806.
[6] Saeko S. Hayashi,et al. First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt , 2017, 1704.08552.
[7] L. Hartmann,et al. THE GOULD’S BELT DISTANCES SURVEY (GOBELINS). I. TRIGONOMETRIC PARALLAX DISTANCES AND DEPTH OF THE OPHIUCHUS COMPLEX , 2016, 1611.06466.
[8] Giorgio Savini,et al. POL-2: a polarimeter for the James-Clerk-Maxwell telescope , 2016, Astronomical Telescopes + Instrumentation.
[9] A. Lazarian,et al. A UNIFIED MODEL OF GRAIN ALIGNMENT: RADIATIVE ALIGNMENT OF INTERSTELLAR GRAINS WITH MAGNETIC INCLUSIONS , 2016, 1605.02828.
[10] Jungyeon Cho,et al. A TECHNIQUE FOR CONSTRAINING THE DRIVING SCALE OF TURBULENCE AND A MODIFIED CHANDRASEKHAR–FERMI METHOD , 2016, 1603.08537.
[11] J. Hough,et al. WIDE-FIELD INFRARED POLARIMETRY OF THE ρ OPHIUCHI CLOUD CORE , 2015 .
[12] J. Pineda,et al. The JCMT Gould Belt Survey: a quantitative comparison between SCUBA-2 data reduction methods , 2015, 1509.06385.
[13] John E. Vaillancourt,et al. Interstellar Dust Grain Alignment , 2015 .
[14] E. Rosolowsky,et al. The JCMT Gould Belt Survey: first results from the SCUBA-2 observations of the Ophiuchus molecular cloud and a virial analysis of its prestellar core population , 2015, 1502.05858.
[15] A. Lazarian,et al. Modelling grain alignment by radiative torques and hydrogen formation torques in reflection nebula , 2014, 1412.0424.
[16] E. Rosolowsky,et al. The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud , 2014, 1411.1428.
[17] G. W. Pratt,et al. Planck intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence , 2014, 1405.0872.
[18] Astronomy,et al. On the radiation driven alignment of dust grains: Detection of the polarization hole in a starless core , 2014, 1408.5133.
[19] A. Lazarian,et al. Grain alignment by radiative torques in special conditions and implications , 2014, 1407.8228.
[20] M. Wright,et al. TADPOL: A 1.3 mm SURVEY OF DUST POLARIZATION IN STAR-FORMING CORES AND REGIONS , 2013, 1310.6653.
[21] David Berry,et al. SMURF: SubMillimeter User Reduction Facility , 2013 .
[22] Zhi-Yun Li,et al. DOES MAGNETIC-FIELD–ROTATION MISALIGNMENT SOLVE THE MAGNETIC BRAKING CATASTROPHE IN PROTOSTELLAR DISK FORMATION? , 2013, 1301.6545.
[23] P. A. R. Ade,et al. SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope , 2013, 1301.3650.
[24] Douglas Scott,et al. Scuba-2: Iterative map-making with the sub-millimetre user reduction facility , 2013, 1301.3652.
[25] L. Mundy,et al. MISALIGNMENT OF MAGNETIC FIELDS AND OUTFLOWS IN PROTOSTELLAR CORES , 2012, 1212.0540.
[26] P. Koch,et al. DUST CONTINUUM AND POLARIZATION FROM ENVELOPE TO CORES IN STAR FORMATION: A CASE STUDY IN THE W51 NORTH REGION , 2012, 1212.0656.
[27] B. Matthews,et al. SUBMILLIMETER POLARIZATION OF GALACTIC CLOUDS: A COMPARISON OF 350 μm AND 850 μm DATA , 2012, 1204.1378.
[28] P. Hennebelle,et al. Protostellar disk formation and transport of angular momentum during magnetized core collapse , 2012, 1203.1193.
[29] R. Emery,et al. Herschel -SPIRE observations of the Polaris flare: Structure of the diffuse interstellar medium at the sub-parsec scale , 2010, 1005.2746.
[30] A. Goodman,et al. THE ANGULAR MOMENTUM OF MAGNETIZED MOLECULAR CLOUD CORES: A TWO-DIMENSIONAL–THREE-DIMENSIONAL COMPARISON , 2010, 1003.5118.
[31] Jessie L. Dotson,et al. 350 μm POLARIMETRY FROM THE CALTECH SUBMILLIMETER OBSERVATORY , 2010, 1001.2790.
[32] P. Hennebelle,et al. Disk formation during collapse of magnetized protostellar cores , 2009, 0909.3190.
[33] M. Houde,et al. MAGNETIC FIELDS AND INFALL MOTIONS IN NGC 1333 IRAS 4 , 2009, 0907.1301.
[34] P. Koch,et al. EVOLUTION OF MAGNETIC FIELDS IN HIGH-MASS STAR FORMATION: LINKING FIELD GEOMETRY AND COLLAPSE FOR THE W51 e2/e8 CORES , 2009, 0905.1996.
[35] Brenda C. Matthews,et al. THE LEGACY OF SCUPOL: 850 μm IMAGING POLARIMETRY FROM 1997 TO 2005 , 2009 .
[36] A. Lazarian,et al. GRAIN ALIGNMENT INDUCED BY RADIATIVE TORQUES: EFFECTS OF INTERNAL RELAXATION OF ENERGY AND COMPLEX RADIATION FIELD , 2008, 0812.4576.
[37] P. Koch,et al. EVOLUTION OF MAGNETIC FIELDS IN HIGH MASS STAR FORMATION: SUBMILLIMETER ARRAY DUST POLARIZATION IMAGE OF THE ULTRACOMPACT H ii REGION G5.89−0.39 , 2008, 0812.3444.
[38] Jessie L. Dotson,et al. DISPERSION OF MAGNETIC FIELDS IN MOLECULAR CLOUDS. II. , 2008, 0909.5227.
[39] L. Loinard,et al. A Preliminary VLBA Distance to the Core of Ophiuchus, with an Accuracy of 4% , 2008, 0801.2192.
[40] G. Kowal,et al. Studies of Regular and Random Magnetic Fields in the ISM: Statistics of Polarization Vectors and the Chandrasekhar-Fermi Technique , 2008, 0801.0279.
[41] D. Padgett,et al. The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. VII. Ophiuchus Observed with MIPS , 2007, 0709.3492.
[42] E. Ostriker,et al. Theory of Star Formation , 2007, 0707.3514.
[43] A. Lazarian,et al. Radiative torques: analytical model and basic properties , 2007, 0707.0886.
[44] A. Lazarian,et al. Tracing Magnetic Fields with Aligned Grains , 2007, 0707.0858.
[45] N. Peretto,et al. The initial conditions of star formation in the Ophiuchus main cloud: Kinematics of the protocluster condensations , , 2007, 0706.1535.
[46] A. Whitworth,et al. The dust temperatures of the pre-stellar cores in the ρ Oph main cloud and in other star-forming regions: consequences for the core mass function , 2007, 0705.2941.
[47] A. Lazarian,et al. Radiative torque alignment: essential physical processes , 2007, 0707.3645.
[48] Ramprasad Rao,et al. Magnetic Fields in the Formation of Sun-Like Stars , 2006, Science.
[49] Jongsoo Kim,et al. The Virial Balance of Clumps and Cores in Molecular Clouds , 2006, Proceedings of the International Astronomical Union.
[50] Ryo Kandori,et al. SIRPOL: a JHKs-simultaneous imaging polarimeter for the IRSF 1.4-m telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.
[51] John E. Vaillancourt,et al. Placing Confidence Limits on Polarization Measurements , 2006, astro-ph/0603110.
[52] A. Lazarian,et al. Grain Alignment by Radiation in Dark Clouds and Cores , 2005, astro-ph/0505571.
[53] L. Rebull,et al. Stellar Rotation in Young Clusters: The First 4 Million Years , 2004 .
[54] R. Crutcher. What Drives Star Formation? , 2003 .
[55] Zhi-Yun Li,et al. Collapse of Magnetized Singular Isothermal Toroids. II. Rotation and Magnetic Braking , 2003, astro-ph/0311377.
[56] S. Wolf,et al. Magnetic Field Evolution in Bok Globules , 2003, astro-ph/0303652.
[57] B. Matthews,et al. Magnetic Fields in Star-forming Molecular Clouds. V. Submillimeter Polarization of the Barnard 1 Dark Cloud , 2002, astro-ph/0205328.
[58] J. Girart,et al. Interferometric Mapping of Magnetic Fields in Star-forming Regions. II. NGC 2024 FIR 5 , 2001, astro-ph/0110682.
[59] T. Henning,et al. Measurements of the Magnetic Field Geometry and Strength in Bok Globules , 2001 .
[60] M. Norman,et al. Magnetic Field Diagnostics Based on Far-Infrared Polarimetry: Tests Using Numerical Simulations , 2001, astro-ph/0103286.
[61] James M. Stone,et al. Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.
[62] D. Johnstone,et al. Large-Area Mapping at 850 Microns. II. Analysis of the Clump Distribution in the ρ Ophiuchi Molecular Cloud , 2000 .
[63] Jessie L. Dotson,et al. Far-Infrared Polarimetry of Galactic Clouds from the Kuiper Airborne Observatory , 2000 .
[64] R. Klessen,et al. Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.
[65] B. Matthews,et al. Magnetic Fields in Star-forming Molecular Clouds. I. The First Polarimetry of OMC-3 in Orion A , 1999, astro-ph/9911148.
[66] Telemachos Ch. Mouschovias,et al. Magnetic Fields and Star Formation: A Theory Reaching Adulthood , 1999 .
[67] Telemachos Ch. Mouschovias,et al. in The Origin of Stars and Planetary Systems , 1999 .
[68] M. Wright,et al. High-Resolution Millimeter-Wave Mapping of Linearly Polarized Dust Emission: Magnetic Field Structure in Orion , 1998, astro-ph/9805288.
[69] A. Goodman,et al. The Polarizing Power of the Interstellar Medium in Taurus , 1998, astro-ph/9803199.
[70] Jessie L. Dotson,et al. Polarization of the Far-Infrared Emission from M17 , 1995 .
[71] F. Shu,et al. Collapse of Magnetized Molecular Cloud Cores. II. Numerical Results , 1993 .
[72] T. Mouschovias,et al. Ambipolar diffusion and star formation : formation and contraction of axisymmetric cloud cores. II: Results , 1993 .
[73] W. Press,et al. The time delay of gravitational lens 0957+561. II: Analysis of radio data and combined optical-radio analysis , 1992 .
[74] B. Wilking. Star Formation in the Ophiuchus Molecular Cloud Complex , 1992 .
[75] J. Stutzki,et al. High spatial resolution isotopic CO and CS observations of M17 SW - The clumpy structure of the molecular cloud core , 1989 .
[76] F. Adams,et al. Star Formation in Molecular Clouds: Observation and Theory , 1987 .
[77] Giles A Novak,et al. Detection of submillimeter polarization in the Orion nebula , 1984 .
[78] W. Cudlip,et al. Far infrared polarimetry of W51A and M42 , 1982 .
[79] F. Vrba,et al. Magnetic field structure in the vicinity of five dark cloud complexes. , 1976 .
[80] A. Z. Dolginov,et al. Orientation of cosmic dust grains , 1976 .
[81] Enrico Fermi,et al. Magnetic fields in spiral arms , 1953 .
[82] L. Davis,et al. The Strength of Interstellar Magnetic Fields , 1951 .
[83] W. A. Hiltner. On the Presence of Polarization in the Continuous Radiation of Stars. II. , 1949 .
[84] W. A. Hiltner,et al. Polarization of Light From Distant Stars by Interstellar Medium. , 1949, Science.
[85] J S Hall,et al. Observations of the Polarized Light From Stars. , 1949, Science.