A new rotational integral formula for intrinsic volumes in space forms
暂无分享,去创建一个
Ximo Gual-Arnau | Luis M. Cruz-Orive | J. J. Nuño-Ballesteros | L. Cruz-Orive | X. Gual-Arnau | J. J. Nuño-Ballesteros | J. J. Nuño-Ballesteros
[1] N Roberts,et al. Unbiased volume estimation with coaxial sections: an application to the human bladder , 1993, Journal of microscopy.
[2] Adrian Baddeley,et al. Stereology for Statisticians , 2004 .
[3] L. Cruz-Orive,et al. A new expression for the density of totally geodesic submanifolds in space forms, with stereological applications , 2009 .
[4] L M Cruz-Orive,et al. Particle number can be estimated using a disector of unknown thickness: the selector. , 1987, Journal of microscopy.
[5] B. Dundas,et al. DIFFERENTIAL TOPOLOGY , 2002 .
[6] O. Varga. Integralgeometrie 3. Croftons Formeln für den Raum , 1936 .
[7] R. Gardner. Geometric Tomography: Parallel X-rays of planar convex bodies , 2006 .
[8] Brian D. Ripley,et al. Integral Geometry and Geometrical Probability , 1978, The Mathematical Gazette.
[9] Eva B. Vedel Jensen,et al. A rotational integral formula for intrinsic volumes , 2008, Adv. Appl. Math..
[10] H. Gundersen,et al. The optical rotator , 1997, Journal of microscopy.
[11] De-lin Ren,et al. Topics in Integral Geometry , 1994 .
[12] H J Gundersen,et al. The nucleator , 1988, Journal of microscopy.
[13] K. Ball. CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .
[14] Cruz Orive,et al. Stereology: meeting point of integral geometry, probability, and statistics. In memory of Professor Luis A. Santaló (1911-2001) , 2002 .
[15] L. Cruz-Orive. A new stereological principle for test lines in three‐dimensional space , 2005, Journal of microscopy.