The long-chain acyl-CoA (LC-CoA) model of glucose-stimulated insulin secretion (GSIS) holds that secretion is linked to a glucose-induced increase in malonyl-CoA level and accumulation of LC-CoA in the cytosol. We have previously tested the validity of this proposal by overexpressing goose malonyl-CoA decarboxylase (MCD) in INS-1 cells, but these studies have been criticized due to: 1) the small insulin secretion response (2-4-fold) of the INS-1 cells used; 2) unknown contribution of the ATP-sensitive K(+) (K(ATP)) channel-independent pathway of GSIS in INS-1 cells, which has been implicated as the site at which lipids regulate insulin granule exocytosis; and 3) deletion of the N-terminal mitochondrial targeting sequence, but not the C-terminal peroxisomal targeting sequence in the goose MCD construct, raising the possibility that a significant fraction of the overexpressed enzyme was localized to peroxisomes. To address these outstanding concerns, INS-1-derived 832/13 cells, which exhibit robust K(ATP) channel-dependent and -independent pathways of GSIS, were treated with a new adenovirus encoding human MCD lacking both its mitochondrial and peroxisomal targeting sequences (AdCMV-MCD Delta 5), resulting in large increases in cytosolic MCD activity. Treatment of 832/13 cells with AdCMV-MCD Delta 5 completely blocked the glucose-induced rise in malonyl-CoA and attenuated the inhibitory effect of glucose on fatty acid oxidation. However, MCD overexpression had no effect on K(ATP) channel-dependent or -independent GSIS in 832/13 cells. Furthermore, combined treatment of 832/13 cells with AdCMV-MCD Delta 5 and triacsin C, an inhibitor of long chain acyl-CoA synthetase that reduces LC-CoA levels, did not impair GSIS. These findings extend our previous observations and are not consistent with the LC-CoA hypothesis as originally set forth.