In-process prediction of the hardened layer in cylindrical traverse grind-hardening

Grind-hardening is an innovative manufacturing process that takes advantage of the high amount of heat generated in the contact zone to produce a martensitic phase transformation in the subsurface layer of the workpiece. However, for a successful industrial implementation of the process, the closed loop control of the hardening depth is essential. Firstly, in this paper, cylindrical traverse grinding tests and metallographic analysis are conducted, and a grinding parameter that enables the in-process control of the hardness penetration depth (HPD) is proposed. Secondly, a nondestructive method based on the Barkhausen noise technique is presented as a quality control procedure for the HPD estimation.

[1]  V. Moorthy,et al.  Evaluation of tempering induced changes in the hardness profile of case-carburised EN36 steel using magnetic Barkhausen noise analysis , 2003 .

[2]  M. F. Zaeh,et al.  A three-dimensional analytical model to predict the thermo-metallurgical effects within the surface layer during grinding and grind-hardening , 2013 .

[3]  Brian A. Shaw,et al.  Testing of Case Depth in Case carburized Gear steels using Magnetic Barkhausen Emission technique , 2004 .

[4]  Konstantinos Salonitis,et al.  Grinding wheel effect in the grind-hardening process , 2008 .

[5]  S. Charap,et al.  Physics of magnetism , 1964 .

[6]  Thai Nguyen,et al.  Prediction of the Hardened Layer in Traverse Cylindrical Grinding-Hardening , 2011 .

[7]  Marc Pepi,et al.  Specific grinding energy causing thermal damage in helicopter gear steel , 2002 .

[8]  Konstantinos Salonitis,et al.  Cooling in grind-hardening operations , 2007 .

[9]  Elesandro Antonio Baptista,et al.  The use of cylindrical grinding to produce a martensitic structure on the surface of 4340 Steel , 2011 .

[10]  T. Brockhoff,et al.  Grind-Hardening: A Comprehensive View , 1999 .

[11]  Ekkard Brinksmeier,et al.  Experimental and numerical identification of process parameters of grind-hardening and resulting part distortions , 2009, Prod. Eng..

[12]  J. I. Marquínez,et al.  Contact length estimation in grinding using thermocouple measurement and numerical simulation , 2012 .

[13]  W. A. Theiner,et al.  Characterization of hardening depth by Barkhausen noise measurement , 1991 .

[14]  Fritz Klocke,et al.  Residual stress prediction in quick point grinding , 2012, Prod. Eng..

[15]  Bogdan Kruszyński,et al.  Residual stress in grinding , 2001 .

[16]  Thai Nguyen,et al.  Realisation of grinding-hardening in workpieces of curved surfaces—Part 1: Plunge cylindrical grinding , 2011 .

[17]  Ekkard Brinksmeier,et al.  Experimental and Numerical Analysis of the Surface Integrity resulting from Outer-Diameter Grind-Hardening , 2011 .

[18]  M. Otala,et al.  Non-destructive magnetic measurement of steel grain size , 1976 .

[19]  B. Rajmohan,et al.  Experimental Studies on the Grind-Hardening Effect in Cylindrical Grinding , 2003 .

[20]  A. Sorsa,et al.  Utilization of Barkhausen noise magnetizing sweeps for case-depth detection from hardened steel , 2012 .

[21]  T. Brockhoff,et al.  Utilization of Grinding Heat as a New Heat Treatment Process , 1996 .

[22]  Baldev Raj,et al.  Evaluation of induction hardened case depth through microstructural characterisation using magnetic Barkhausen emission technique , 2000 .

[23]  Linilson R. Padovese,et al.  Magnetic Barkhausen Noise and hysteresis loop in commercial carbon steel : influence of applied tensile stress and grain size , 2001 .

[24]  Yuan Wei,et al.  Experimental Study on Grinding-hardening of 1060 Steel , 2012 .

[25]  Brian A. Shaw,et al.  Effect of deformation in bending on magnetic Barkhausen noise in low alloy steel , 2004 .

[26]  Lei Zhang,et al.  Experimental and numerical studies of AISI1020 steel in grind-hardening , 2009 .