Detecting Inconsistencies in the Gene Ontology Using Ontology Databases with Not-gadgets

We present ontology databases with not-gadgets, a method for detecting inconsistencies in an ontology with large numbers of annotated instances by using triggers and exclusion dependencies in a unique way. What makes this work relevant is the use of the database itself, rather than an external reasoner, to detect logical inconsistencies given large numbers of annotated instances. What distinguishes this work is the use of event-driven triggers together with the introduction of explicit negations. We applied this approach toward the serotonin example, an open problem in biomedical informatics which aims to use annotations to help identify inconsistencies in the Gene Ontology. We discovered 75 inconsistencies that have important implications in biology, which include: (1) methods for refining transfer rules used for inferring electronic annotations, and (2) highlighting possible biological differences across species worth investigating.

[1]  Michael L. Brodie On conceptual modelling - perspectives from artificial intelligence, databases and programming languages , 1984, Topics in information systems.

[2]  Setrag Khoshafian,et al.  A decomposition storage model , 1985, SIGMOD Conference.

[3]  Judith A. Blake,et al.  The Mouse Genome Database (MGD): mouse biology and model systems , 2007, Nucleic Acids Res..

[4]  Carole A. Goble,et al.  State of the nation in data integration for bioinformatics , 2008, J. Biomed. Informatics.

[5]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[6]  Raymond Reiter,et al.  Towards a Logical Reconstruction of Relational Database Theory , 1982, On Conceptual Modelling.

[7]  Franz Baader Description Logics , 2009, Reasoning Web.

[8]  Jeffrey D. Uuman Principles of database and knowledge- base systems , 1989 .

[9]  Raymond Reiter,et al.  Deductive Question-Answering on Relational Data Bases , 1977, Logic and Data Bases.

[10]  Claude Kirchner,et al.  Theorem Proving Modulo , 2003, Journal of Automated Reasoning.

[11]  Juhnyoung Lee,et al.  Ontology management for large-scale e-commerce applications , 2005, International Workshop on Data Engineering Issues in E-Commerce.

[12]  Dejing Dou,et al.  Ontology Database: A New Method for Semantic Modeling and an Application to Brainwave Data , 2008, SSDBM.

[13]  Frank van Harmelen,et al.  Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema , 2002, SEMWEB.

[14]  Boris Motik,et al.  Bridging the gap between OWL and relational databases , 2007, WWW '07.

[15]  I. Horrocks,et al.  The Instance Store: DL Reasoning with Large Numbers of Individuals , 2004, Description Logics.

[16]  Olegas Vasilecas,et al.  An algorithm for the automatic transformation of ontology axioms into a rule model , 2007, CompSysTech '07.

[17]  Diego Calvanese,et al.  DL-Lite: Tractable Description Logics for Ontologies , 2005, AAAI.

[18]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[19]  Marianne Winslett,et al.  Scientific and Statistical Database Management, 21st International Conference, SSDBM 2009, New Orleans, LA, USA, June 2-4, 2009, Proceedings , 2009, SSDBM.

[20]  Christopher G Chute,et al.  National Center for Biomedical Ontology: advancing biomedicine through structured organization of scientific knowledge. , 2006, Omics : a journal of integrative biology.

[21]  A. Campbell,et al.  Progress in Artificial Intelligence , 1995, Lecture Notes in Computer Science.

[22]  Heiner Stuckenschmidt,et al.  Ontology-Based Integration of Information - A Survey of Existing Approaches , 2001, OIS@IJCAI.

[23]  Jeffrey D. Ullman,et al.  Principles of Database and Knowledge-Base Systems, Volume II , 1988, Principles of computer science series.

[24]  Gene Ontology Consortium,et al.  The Gene Ontology (GO) project in 2006 , 2005, Nucleic Acids Res..

[25]  Jeff Heflin,et al.  LUBM: A benchmark for OWL knowledge base systems , 2005, J. Web Semant..

[26]  Gerhard Weikum,et al.  Scalable join processing on very large RDF graphs , 2009, SIGMOD Conference.

[27]  Enrico Franconi,et al.  Ontologies and databases: myths and challenges , 2008, Proc. VLDB Endow..

[28]  Jeffrey M. Bradshaw,et al.  Applying KAoS Services to Ensure Policy Compliance for Semantic Web Services Workflow Composition and Enactment , 2004, SEMWEB.

[29]  Francesco M. Donini,et al.  Description logics of minimal knowledge and negation as failure , 2002, TOCL.

[30]  Volker Haarslev,et al.  High Performance Reasoning with Very Large Knowledge Bases: A Practical Case Study , 2000, IJCAI.

[31]  Judith A. Blake,et al.  Gene Ontology annotations: what they mean and where they come from , 2008, BMC Bioinformatics.

[32]  John K. Slaney,et al.  Relevant Logic and Paraconsistency , 2005, Inconsistency Tolerance.

[33]  Vassilis Christophides,et al.  Optimizing taxonomic semantic web queries using labeling schemes , 2004, J. Web Semant..

[34]  Olivier Curé,et al.  A Database Trigger Strategy to Maintain Knowledge Bases Developed Via Data Migration , 2005, EPIA.

[35]  Daniel J. Abadi,et al.  SW-Store: a vertically partitioned DBMS for Semantic Web data management , 2009, The VLDB Journal.

[36]  Raymond Reiter,et al.  What should a database know? , 1988, PODS '88.

[37]  Jeff Heflin,et al.  An Evaluation of Knowledge Base Systems for Large OWL Datasets , 2004, SEMWEB.