Modeling and Simulation of Viscous Electro-Active Polymers.

Electro-active materials are capable of undergoing large deformation when stimulated by an electric field. They can be divided into electronic and ionic electro-active polymers (EAPs) depending on their actuation mechanism based on their composition. We consider electronic EAPs, for which attractive Coulomb forces or local re-orientation of polar groups cause a bulk deformation. Many of these materials exhibit pronounced visco-elastic behavior. Here we show the development and implementation of a constitutive model, which captures the influence of the electric field on the visco-elastic response within a geometrically non-linear finite element framework. The electric field affects not only the equilibrium part of the strain energy function, but also the viscous part. To adopt the familiar additive split of the strain from the small strain setting, we formulate the governing equations in the logarithmic strain space and additively decompose the logarithmic strain into elastic and viscous parts. We show that the incorporation of the electric field in the viscous response significantly alters the relaxation and hysteresis behavior of the model. Our parametric study demonstrates that the model is sensitive to the choice of the electro-viscous coupling parameters. We simulate several actuator structures to illustrate the performance of the method in typical relaxation and creep scenarios. Our model could serve as a design tool for micro-electro-mechanical systems, microfluidic devices, and stimuli-responsive gels such as artificial skin, tactile displays, or artificial muscle.

[1]  Gérard A. Maugin,et al.  Electrodynamics Of Continua , 1990 .

[2]  C. Truesdell,et al.  The Classical Field Theories , 1960 .

[3]  Ron Pelrine,et al.  Actuation Response of Polyacrylate Dielectric Elastomers , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[4]  R. Pelrine,et al.  Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation , 1998 .

[5]  K. Khan,et al.  A variational constitutive framework for the nonlinear viscoelastic response of a dielectric elastomer , 2013 .

[6]  R. Ogden,et al.  Nonlinear electroelastostatics: a variational framework , 2009 .

[7]  M. Lax,et al.  Linear and Nonlinear Electrodynamics in Elastic Anisotropic Dielectrics , 1971 .

[8]  Y. Cohen Electroactive Polymer (EAP) Actuators as Artificial Muscles - Reality , 2001 .

[9]  Y. Pao IV – Electromagnetic Forces in Deformable Continua , 1978 .

[10]  Edoardo Mazza,et al.  Electromechanical coupling in dielectric elastomer actuators , 2007 .

[11]  Alejandro Mota,et al.  A variational constitutive model for porous metal plasticity , 2006 .

[12]  Christian Miehe,et al.  Algorithms for computation of stresses and elasticity moduli in terms of Seth–Hill's family of generalized strain tensors , 2001 .

[13]  Peter Wriggers,et al.  Nichtlineare Finite-Element-Methoden , 2001 .

[14]  A. Eringen,et al.  On the equations of the electrodynamics of deformable bodies of finite extent , 1977 .

[15]  W. Wagner,et al.  Dielectric elastomers – numerical modeling of nonlinear visco‐electroelasticity , 2012 .

[16]  P. McHugh,et al.  A review on dielectric elastomer actuators, technology, applications, and challenges , 2008 .

[17]  M. Lambrecht,et al.  Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials , 2002 .

[18]  Yoseph Bar-Cohen,et al.  Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Edition , 2004 .

[19]  R. Toupin The Elastic Dielectric , 1956 .

[20]  R. McMeeking,et al.  A principle of virtual work for combined electrostatic and mechanical loading of materials , 2007 .

[21]  S. Göktepe,et al.  Coupled thermoviscoplasticity of glassy polymers in the logarithmic strain space based on the free volume theory , 2011 .

[22]  Leonard Eugene Dickson,et al.  A Theory of Invariants , 1909 .

[23]  P. Steinmann,et al.  Numerical modelling of non‐linear electroelasticity , 2007 .

[24]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[25]  W. Jost,et al.  Handbuch der Physik. Herausgegeben von S. Flügge, Bd. IX. Strömungsmechanik III. Mitherausgeber C. Truesdell, 815 Seiten, 248 Figuren, Springer 1960. Preis: DM 158,40. , 1961 .

[26]  Xiaohong Chen Nonlinear electro-thermo-viscoelasticity , 2010 .

[27]  S. Reese,et al.  A theory of finite viscoelasticity and numerical aspects , 1998 .

[28]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[29]  R. Fosdick,et al.  Electrodynamics and Thermomechanics of Material Bodies , 2007 .

[30]  R. Ogden,et al.  Nonlinear electroelasticity , 2005 .

[31]  Ron Pelrine,et al.  High-Strain Actuator Materials Based on Dielectric Elastomers , 2000 .

[32]  J. Ericksen Theory of Elastic Dielectrics Revisited , 2007 .

[33]  Andreas Menzel,et al.  Electrostriction in electro-viscoelastic polymers , 2012 .

[34]  Yoseph Bar-Cohen,et al.  Electroactive polymers: current capabilities and challenges , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[35]  On Inverse Form Finding for Anisotropic Hyperelasticity in Logarithmic Strain Space , 2010 .

[36]  A. Cemal Eringen,et al.  On the foundations of electroelastostatics , 1963 .

[37]  G. Maugin On modelling electromagnetomechanical interactions in deformable solids , 2009 .

[38]  Edoardo Mazza,et al.  Modeling of a pre-strained circular actuator made of dielectric elastomers , 2005 .

[39]  D. Steigmann On the Formulation of Balance Laws for Electromagnetic Continua , 2009 .

[40]  Ray W. Ogden,et al.  Nonlinear Electroelastic Deformations , 2006 .

[41]  Hilary Bart-Smith,et al.  The electro-mechanical response of elastomer membranes coated with ultra-thin metal electrodes , 2005 .

[42]  Andreas Menzel,et al.  Phenomenological modeling of viscous electrostrictive polymers , 2012 .

[43]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[44]  P. Steinmann,et al.  Experimental study and numerical modelling of VHB 4910 polymer , 2012 .

[45]  D. De Rossi,et al.  Polymers responding to electrical or electrochemical stimuli for linear actuators , 2004 .

[46]  Paul Steinmann,et al.  Computational Nonlinear Electro-Elasticity — Getting Started — , 2011 .

[47]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[48]  A. Spencer Continuum Mechanics , 1967, Nature.

[49]  R. Bustamante A variational formulation for a boundary value problem considering an electro-sensitive elastomer interacting with two bodies , 2009 .

[50]  H. F. Tiersten,et al.  On the nonlinear equations of thermo-electroelasticity , 1971 .

[51]  S. Dubowsky,et al.  Large-scale failure modes of dielectric elastomer actuators , 2006 .

[52]  M. Ortiz,et al.  A variational constitutive model for soft biological tissues. , 2008, Journal of biomechanics.

[53]  Davide Bigoni Nonlinear Solid Mechanics: Solid mechanics at finite strains , 2012 .

[54]  Klaus-Jürgen Bathe,et al.  The principle of virtual work , 2011 .

[55]  W. Possart,et al.  Experimental and theoretical investigation of nonlinear viscoelastic polyurethane systems , 2007 .

[56]  A.J.M. Spencer,et al.  Theory of invariants , 1971 .

[57]  R. Ogden,et al.  Magnetoelastic modelling of elastomers , 2003 .

[58]  Serdar Göktepe,et al.  Finite viscoplasticity of amorphous glassy polymers in the logarithmic strain space , 2009 .

[59]  Q. Pei,et al.  Advances in dielectric elastomers for actuators and artificial muscles. , 2010, Macromolecular rapid communications.