Einsatz von geeigneten Verfahren der Pulslängenmodulation zur Ansteuerung von Hochfrequenz-Schaltverstärkern

Die Energieeffizienz von HF-Leistungsverstarken ist mit der sehr dynamischen Entwicklung des Mobilfunks in den letzten Jahren verstarkt in den Brennpunkt des Interesses geruckt, da sie masgeblichen Einfluss auf die mogliche Betriebsdauer von mobilen Endgeraten hat und sich auch signifikant auf die Betriebskosten des Mobilfunknetzes selbst auswirkt. Hieraus leitet sich die Motivation zum Einsatz von HF-Schaltverstarkern ab, die einen Betrieb mit deutlich verbessertem Wirkungsgrad versprechen. Zur Ansteuerung einer derartigen HF-Schaltverstarkerstufe ist aber eine Aufbereitung des HF-Nutzsignals mit Hilfe einer entsprechenden Modulatorschaltung notwendig. Im Rahmen der vorliegenden Arbeit wurden am Beispiel der konventionellen Pulslangenmodulation, sowie der Bandpass-Pulslangenmodulation Verfahren zur Ansteuerung von Schaltverstarkern untersucht, die sich zur effizienten Leistungsverstarkung von Hochfrequenzsignalen mit variabler Einhullenden eignen. Es wurden zunachst mit Hilfe theoretischer Uberlegungen und Simulationen die fur den Einsatz in Schaltverstarkern masgeblichen Eigenschaften der beiden Modulationsverfahren bestimmt. Von besonderem Interesse war hierbei die Untersuchung der mit dem jeweiligen Modulationsverfahren erreichbaren Kodiereffizienz, welche die dem Ausgangssignalspektrum des Modulators entnehmbare Nutzsignalleistung bzw. -amplitude beschreibt und fur den erzielbaren Wirkungsgrad eines Schaltverstarkers von groser Bedeutung ist. Hierbei sind HF-Nutzsignale im Frequenzbereich von 450 MHz bis 3 GHz betrachtet worden, wie sie insbesondere fur Anwendungen in der Mobilkommunikation von Interesse sind. Beim untersuchten Verfahren der Bandpass-Pulslangenmodulation lag das Augenmerk insbesondere auf einer neuartigen Schaltungsanordnung des Modulators, die eine lineare Ubertragung der Hullkurveninformation des HF-Nutzsignals ermoglicht. Im Vergleich zur konventionellen Pulslangenmodulation zeichnet sich die Bandpass-Pulslangenmodulation durch eine besonders hohe Kodiereffizienz aus, weshalb sie sich fur die Ansteuerung von Schaltverstarkern als vorteilhaft erweist. Anhand von praktischen Implementierungen in Form von integrierten Modulatorschaltungen in einer 250 nm-SiGe-Halbleitertechnologie konnten die wichtigsten Eigenschaften der Modulationsverfahren messtechnisch verifiziert und die Tauglichkeit der beiden untersuchten Verfahren fur den praktischen Einsatz nachgewiesen werden.

[1]  J. R. Carson Notes on the Theory of Modulation , 1922, Proceedings of the Institute of Radio Engineers.

[2]  Michael Murray. Elliott Single sideband transmission by envelope elimination and restoration. , 1953 .

[3]  E. Hölzler,et al.  Theorie und technik der pulsmodulation , 1957 .

[4]  Jack E. Volder The CORDIC Trigonometric Computing Technique , 1959, IRE Trans. Electron. Comput..

[5]  H. Swanson,et al.  The Pulse Duration Modulator: A New Method of High-Level Modulation in Broadcast Transmitters , 1971 .

[6]  F. Raab,et al.  Radio Frequency Pulsewidth Modulation , 1973, IEEE Trans. Commun..

[7]  David R. Cox,et al.  Linear Amplification with Nonlinear Components , 1974, IEEE Trans. Commun..

[8]  Giuseppe S. Buja,et al.  Optimal Pulsewidth Modulation for Feeding AC Motors , 1977, IEEE Transactions on Industry Applications.

[9]  Simon Haykin,et al.  Communication Systems , 1978 .

[10]  J. F. Kukielka,et al.  A high-frequency temperature-stable monolithic VCO , 1981, IEEE Journal of Solid-State Circuits.

[11]  Massimo Alioto,et al.  Model and Design of Bipolar and MOS Current-Mode Logic: CML, ECL and SCL Digital Circuits , 1991 .

[12]  Joachim Holtz Pulsewidth modulation-a survey , 1992, IEEE Trans. Ind. Electron..

[13]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[14]  D.G. Holmes,et al.  A general analytical method for determining the theoretical harmonic components of carrier based PWM strategies , 1998, Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242).

[15]  Lawrence E. Larson,et al.  Linear high-efficiency microwave power amplifiers using bandpass delta-sigma modulators , 1998 .

[16]  Wolfgang Mathis,et al.  Zero-position coding with separated baseband in low-power class-D audio amplifiers for mobile communications , 2001, 5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service. TELSIKS 2001. Proceedings of Papers (Cat. No.01EX517).

[17]  Mihai Albulet,et al.  RF power amplifiers , 2001 .

[18]  Wolfgang Mathis,et al.  Zero Position Coding (ZePoC) - A Generalised Concept of Pulse-Length Modulated Signals and its Application to Class-D Audio Power Amplfiers , 2001 .

[19]  Michel Renovell,et al.  A high accuracy triangle-wave signal generator for on-chip ADC testing , 2002, Proceedings The Seventh IEEE European Test Workshop.

[20]  D. Knoll,et al.  Novel collector design for high-speed SiGe:C HBTs , 2002, Digest. International Electron Devices Meeting,.

[21]  F. Raab,et al.  Power amplifiers and transmitters for RF and microwave , 2002 .

[22]  Robert Weigel,et al.  The Umts (Universal Mobile Telecom Standard) Physical Layer Basics,Standard,and Frontend Matters , 2002 .

[23]  F. Jondral,et al.  Wahrscheinlichkeitsrechnung und stochastische Prozesse , 2002 .

[24]  Dilip V. Sarwate,et al.  The frequency spectrum of pulse width modulated signals , 2003, Signal Process..

[25]  L. Larson,et al.  A 16-GHz ultra-high-speed Si-SiGe HBT comparator , 2003, IEEE J. Solid State Circuits.

[26]  Sidney Soclof Design And Applications Of Analog Integrated Circuits , 2004 .

[27]  S. Rosnell,et al.  Bandpass pulse-width modulation (BP-PWM) , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[28]  Yuan Lu,et al.  A 32 GSample/sec SiGe HBT comparator for ultra-high-speed analog-to-digital conversion , 2005, 2005 Asia-Pacific Microwave Conference Proceedings.

[29]  H. Gustat,et al.  NOR/OR register based ECL circuits for maximum data rate , 2005, Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting, 2005..

[30]  M. Berroth,et al.  Comparison of a single-ended class AB, a balance and a Doherty power amplifier , 2005, 2005 Asia-Pacific Microwave Conference Proceedings.

[31]  Boon Teck Ooi,et al.  Naturally sampled triangle carrier PWM bandwidth limit and output spectrum , 2005, IEEE Transactions on Power Electronics.

[32]  Thomas Johnson,et al.  RF Class-D Amplification With Bandpass Sigma–Delta Modulator Drive Signals , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[33]  Eduard Alarcón,et al.  Bandwidth limits in PWM switching amplifiers , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[34]  J. Varis,et al.  Digital Implementation of Bandpass Pulse-Width Modulator , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[35]  Thomas Johnson,et al.  Measurement of Bandpass Sigma-Delta Modulator Coding Efficiency and Pulse Transition Frequency for RF Class D Power Amplifier Applications , 2006, 2006 Canadian Conference on Electrical and Computer Engineering.

[36]  T. Larsen,et al.  An RF Pulse Width Modulator for Switch-Mode Power Amplification of Varying Envelope Signals , 2007, 2007 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[37]  M. Berroth,et al.  A microwave Doherty amplifier with programmable bias control , 2008, 2008 51st Midwest Symposium on Circuits and Systems.

[38]  T. Larsen,et al.  A 2-GHz GaAs HBT RF Pulsewidth Modulator , 2008, IEEE Transactions on Microwave Theory and Techniques.

[39]  R. Leberer,et al.  An AlGaN/GaN class-S amplifier for RF-communication signals , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[40]  Thomas Johnson,et al.  Comparison of Bandpass $\Sigma\Delta$ Modulator Coding Efficiency With a Periodic Signal Model , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[41]  M. Nielsen High Efficiency Power Amplification for Varying Envelope Signals , 2008 .

[42]  W. Heinrich,et al.  Switch-mode amplifier ICs with over 90% efficiency for Class-S PAs using GaAs-HBTs and GaN-HEMTs , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[43]  W. Bronner,et al.  High Efficiency Digital GaN MMIC Power Amplifiers for Future Switch-Mode Based Mobile Communication Systems , 2009, 2009 Annual IEEE Compound Semiconductor Integrated Circuit Symposium.

[44]  K. Sridharan,et al.  50 Years of CORDIC: Algorithms, Architectures, and Applications , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[45]  Robert Weigel,et al.  Modulation and filter test procedure for RF Class-S Power Amplifier architecture , 2009, 2009 Asia Pacific Microwave Conference.

[46]  K. Blau,et al.  Reconstruction filters for switched-mode power amplifier systems , 2009, 2009 European Microwave Conference (EuMC).

[47]  P. Ostrovskyy,et al.  A 9 GS/s 2.1..2.2 GHz bandpass delta-sigma modulator for Class-S power amplifier , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[48]  W. Heinrich,et al.  Design and Realization of an Output Network for a GaN-HEMT Current-Mode Class-S Power Amplifier at 450MHz , 2009, 2009 German Microwave Conference.

[49]  Nathan O. Sokal,et al.  Class of High-Efficiency Tuned Switching Power Amplifiers , 2009 .

[50]  K. Blau,et al.  High-power filters for switched-mode power amplifier systems , 2009, 2009 IEEE Radio and Wireless Symposium.

[51]  O. Ambacher,et al.  Integrated-Schottky-diode GaN HFETs for high-efficiency digital PA MMICs at 2 GHz , 2010, The 40th European Microwave Conference.

[52]  Andreas Wentzel,et al.  RF class-S power amplifiers: State-of-the-art results and potential , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[53]  K. Blau,et al.  Compact low-loss wideband-matched RF filters for class-S power amplifier systems , 2010, German Microwave Conference Digest of Papers.

[54]  J.C. Scheytt,et al.  RF Bandpass Delta-Sigma Modulators for highly-efficient Class-S transmitters in SiGe BiCMOS technology , 2010, 2010 IEEE International Conference on Wireless Information Technology and Systems.

[55]  R. Quay,et al.  GaN devices for communication applications: evolution of amplifier architectures , 2010, International Journal of Microwave and Wireless Technologies.

[56]  Andreas Wentzel,et al.  Advanced switch-mode concepts using GaN: The class-S amplifier , 2010, 18-th INTERNATIONAL CONFERENCE ON MICROWAVES, RADAR AND WIRELESS COMMUNICATIONS.

[57]  A Leuther,et al.  Dual-Gate GaN MMICs for MM-Wave Operation , 2011, IEEE Microwave and Wireless Components Letters.

[58]  Rudiger Quay,et al.  900 MHz pulse-width-modulated class-s power amplifier with improved linearity , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[59]  Andreas Wentzel Klasse-S Mikrowellen-Leistungsverstärker mit GaN-Transistoren , 2011 .

[60]  Rudiger Quay,et al.  Design and modelling challenges for advanced class-S digital transmitters , 2011, 2011 Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits.

[61]  R. Leberer,et al.  Advances on GaN based switch mode amplifiers for communication applications , 2011, 2011 41st European Microwave Conference.

[62]  Matthias A. Hein,et al.  Singly and doubly terminated balanced input comb-line filters for current-mode class-S power amplifiers , 2011, 2011 10th International Conference on Telecommunication in Modern Satellite Cable and Broadcasting Services (TELSIKS).

[63]  O. Ambacher,et al.  Broadband GaN-Based Switch-Mode Core MMICs with 20 W Output Power Operating at UHF , 2011, 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[64]  Andrei Grebennikov,et al.  A high-efficiency 100-W four-stage Doherty GaN HEMT power amplifier module for WCDMA systems , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[65]  A. Pascht,et al.  An integrated 12 Gbps switch-mode driver MMIC with 5 VPP for digital transmitters in 100 nm GaN technology , 2012, 2012 7th European Microwave Integrated Circuit Conference.

[66]  A. Cidronali,et al.  A 80 W broadband GaN HEMT envelope tracking PA harmonically tuned for WCDMA and LTE with 50% average efficiency , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[67]  G. Fischer,et al.  Coding efficiency of RF pulse-width-modulation for mobile communications , 2012, 2012 International Symposium on Signals, Systems, and Electronics (ISSSE).

[68]  E. Serebryakova High-Power Comb-Line Filter Architectures for Switched-Mode RF Power Amplifier Systems , 2013 .

[69]  Kurt Blau,et al.  The appropriate design of the reconstruction filter and its influence on the output power and efficiency of class-S and quasi class-S power amplifiers , 2014, 2014 20th International Conference on Microwaves, Radar and Wireless Communications (MIKON).