Complete constant mean curvature surfaces in euclidean three-space

[1]  Luther Pfahler Eisenhart,et al.  A Treatise on the Differential Geometry of Curves and Surfaces , 1961, The Mathematical Gazette.

[2]  W. Hsiang Generalized rotational hypersurfaces of constant mean curvature in the Euclidean spaces. I , 1987 .

[3]  Nicolaos Kapouleas,et al.  Constant mean curvature surfaces in Euclidean three-space , 1987 .

[4]  C. Taubes Self-dual Yang-Mills connections on non-self-dual 4-manifolds , 1982 .

[5]  H. Lawson,et al.  Complete Minimal Surfaces in S 3 , 1970 .

[6]  Henry C. Wente Counterexample to a conjecture of H. Hopf , 1986 .

[7]  Ch. Delaunay,et al.  Sur la surface de révolution dont la courbure moyenne est constante. , 1841 .

[8]  H. Hopf Lectures on differential geometry in the large , 1956 .

[9]  Calvert J. Winter,et al.  R. S. C. , 1936 .

[10]  Bruce Solomon,et al.  The structure of complete embedded surfaces with constant mean curvature , 1989 .

[11]  S. Chern Some new characterizations of the Euclidean sphere , 1945 .

[12]  J. H. Michael,et al.  Sobolev and mean‐value inequalities on generalized submanifolds of Rn , 1973 .

[13]  Christine Breiner,et al.  Compact constant mean curvature surfaces in Euclidean three-space , 1987, 1210.3394.

[14]  R. Schoen The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation , 1988 .

[15]  Peter Li On the Sobolev constant and the $p$-spectrum of a compact riemannian manifold , 1980 .

[16]  C. Rourke,et al.  Introduction to Piecewise-Linear Topology , 1972 .