The Effects of Sintering Temperature Variations on Microstructure Changes of LTCC Substrate

The successful development and commercialization of high performance ceramic materials has attracted much attention especially for multilayer substrates using the Low Temperature Co-fired Ceramic (LTCC) technology. This technology has become a popular technology for automobiles and wireless communications due to the advantages of the excellent combination of electrical, thermal, mechanical and chemical stability for a wide range of applications, thus allowing preparation of 3-dimensional circuits incorporating passive components within a multilayer construction (Matters-Kammerer et al., 2006; Zhou et al., 2008). This approach also allows the presence a number of interfaces and thus reduction of the overall substrate size and cost can be realized (Lo and Duh, 2002; Chen et al., 2004 and Zhu et al., 2007). The circuits are capable of withstanding sintering during processing temperatures up to 1000 °C. For telecommunication applications the usage of ceramic is implemented in Telecom control station and power supply circuits for the capability to dissipate excess heat and maintain dimensional control stability of the ceramic package. This is important where back-up power is required to maintain operation during primary power outages when cooling is restricted (Barlow and Elshabini, 2007). Another important parameter for wireless communication devices is the requirement to have low dielectric loss (tan δ ∼ 10-3 or less) for higher processing speed, higher dielectric constant (e’>10) for miniaturization of the devices and higher integration density (≥ 3 g/cm3) (Kume et al., 2007; Long et al., 2009). For this reason, it is important to prepare high quality LTCC substrate/package whose properties are strongly dependent on microstructure, phase purity and sintering temperature (Xiang et al., 2002). Therefore the microstructure must be carefully controlled to get dense and fine grained ceramics in order to improve their properties and reliability in many applications (Hsu et al., 2003).

[1]  Suk‐Joong L. Kang,et al.  Densification And Shrinkage During Liquid-Phase Sintering , 1991 .

[2]  K. Yoon,et al.  Abnormal Grain Growth at the Interface of Centrifugally Cast Alumina Bilayer during Sintering , 2004 .

[3]  Sunit Rane,et al.  Firing and processing effects on microstructure of fritted silver thick film electrode materials for solar cells , 2003 .

[4]  Marion Matters-Kammerer,et al.  Material properties and RF applications of high k and ferrite LTCC ceramics , 2006, Microelectron. Reliab..

[5]  G. Fantozzi,et al.  Influence of the amount of Na2O and SiO2 on the sintering behavior and on the microstructural evolution of a Bayer alumina powder , 2005 .

[6]  Sea-Fue Wang,et al.  Effects of additives on the densification and microstructural evolution of fine θ-Al2O3 powder , 2003 .

[7]  A. Roosen,et al.  Viscous Flow as the Driving Force for the Densification of Low-Temperature Co-Fired Ceramics , 2007 .

[8]  G. Beall,et al.  Microstructural Evolution in Some Silicate Glass–Ceramics: A Review , 2008 .

[9]  W. Jo,et al.  Effect of Interface Structure on the Microstructural Evolution of Ceramics , 2006 .

[10]  S. Dillon,et al.  Mechanism for the development of anisotropic grain boundary character distributions during normal grain growth , 2009 .

[11]  D. Sinclair,et al.  Microwave Dielectric Properties of Low Firing Temperature Bi2W2O9 Ceramics , 2008 .

[12]  R. M. Cannon,et al.  Abnormal Grain Growth in Alumina: Synergistic Effects of Yttria and Silica , 2003 .

[13]  M. Rahaman Ceramic Processing and Sintering , 1995 .

[14]  G. Rohrer Chapter 12 – The Anisotropy of Metal Oxide Surface Properties , 2001 .

[15]  Hong Wang,et al.  Dielectric Behavior and Cofiring with Silver of Monoclinic BiSbO4 Ceramic , 2008 .

[16]  I. Lin,et al.  Microwave dielectric properties of glass-MCT low temperature co-firable ceramics , 2004 .

[17]  P. Raj,et al.  Anisotropic shrinkage in tape-cast alumina : Role of processing parameters and particle shape , 2004 .

[18]  W. D. Kingery,et al.  Introduction to Ceramics , 1976 .

[19]  Songping Wu,et al.  Behaviors of ZnO-doped silver thick film and silver grain growth mechanism , 2011 .

[20]  S. Küçükbayrak,et al.  The influence of the binder on the properties of sintered glass-ceramics produced from industrial wastes , 2009 .

[21]  Charles A. Harper,et al.  Hybrid Microelectronics Handbook , 1995 .

[22]  Aicha Elshabini,et al.  Ceramic Interconnect Technology Handbook , 2007 .

[23]  Heping Zhou,et al.  Densification and dielectric properties of CaO–B2O3–SiO2 system glass ceramics , 2003 .

[24]  R. Drew,et al.  Wettability and spreading kinetics of molten aluminum on copper-coated ceramics , 2006 .

[25]  J. Jean,et al.  Devitrification Kinetics and Mechanism of K2O–CaO–SrO–BaO–B2O3–SiO2 Glass‐Ceramic , 2004 .

[26]  K. Uematsu,et al.  Grain‐Oriented Microstructure of Alumina Ceramics Made through the Injection Molding Process , 2005 .

[27]  J. Jean,et al.  Sintering of a crystallizable CaO-B2O3-SiO2 glass with silver , 2004 .

[28]  Rao Tummala,et al.  Ceramic and Glass‐Ceramic Packaging in the 1990s , 1991 .

[29]  Seong‐Hyeon Hong,et al.  Effect of Surface Impurities on the Microstructure Development during Sintering of Alumina , 2004 .

[30]  Y. Imanaka,et al.  Influence of Shrinkage Mismatch between Copper and Ceramics on Dimensional Control of the Multilayer Ceramic Circuit Board , 1992 .

[31]  Hideo Takamizawa,et al.  Low Firing Temperature Multilayer Glass-Ceramic Substrate , 1983 .

[32]  J. Ferreira,et al.  Microstructure and thermal conductivity of porous ZrO2 ceramics , 2007 .

[33]  Takashi Yamaguchi,et al.  Sintering and microstructure development of glass-bonded silver thick films , 1984 .

[34]  J. Jean,et al.  Crystallization Kinetics and Mechanism of Low‐Dielectric, Low‐Temperature, Cofirable CaO‐B2O3‐SiO2 Glass‐Ceramics , 1999 .

[35]  H. Sawhill Materials Compatibility and Co‐Sintering Aspects in Low Temperature Co‐Fired Ceramic Packages , 2008 .

[36]  Gustaf Arrhenius,et al.  X-ray diffraction procedures for polycrystalline and amorphous materials , 1955 .

[37]  A. Atkinson,et al.  Microstructure evolution in thin zirconia films: Experimental observation and modelling , 2011 .

[38]  Yoshihiko Imanaka,et al.  Multilayered low temperature cofired ceramics (LTCC) technology , 2004 .

[39]  Sunit Rane,et al.  Properties of lead-free conductive thick films of co-precipitated silver–palladium powders , 2005 .

[40]  Yongxiang Li,et al.  Sintering and Microwave Dielectric Properties of the LiNb0.63Ti0.4625O3 Ceramics with the B2O3–SiO2 Liquid‐Phase Additives , 2009 .

[41]  Young‐Chang Joo,et al.  Anisotropy of grain boundary energies as cause of abnormal grain growth in electroplated copper films , 2003 .

[42]  R. L. Coble,et al.  Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models , 1961 .

[43]  Min Liu,et al.  Study on properties of CaO–SiO2–B2O3 system glass-ceramic , 2007 .

[44]  W. Tuan,et al.  Effect of Silver on the Sintering and Grain-Growth Behavior of Barium Titanate , 2000 .

[45]  A. Evans,et al.  Residual Stresses and Cracking in Metal/Ceramic Systems for Microelectronics Packaging , 1985 .

[46]  H. Yong,et al.  Study of gel-tape-casting process of ceramic materials , 2002 .

[47]  Shih‐Chang Lin,et al.  The Effect of Anisotropic Shrinkage in Tape-Cast Low-Temperature Cofired Ceramics on Camber Development of Bilayer Laminates , 2011 .

[48]  J. Bobick,et al.  Hydroxylapatite synthesis and characterization in dense polycrystalline form , 1976 .

[49]  Sea-Fue Wang,et al.  Effect of SiO2 addition on the microstructure and microwave dielectric properties of ultra-low fire TiTe3O8 ceramics , 2009 .

[50]  James F. Shackelford,et al.  Introduction to materials science for engineers , 1985 .

[51]  P.J.G. Schreurs,et al.  Microstructure evolution of tin-lead solder , 2004, IEEE Transactions on Components and Packaging Technologies.

[52]  Yuxiang Chen,et al.  Diffusivity of silver ions in the low temperature co-fired ceramic (LTCC) substrates , 2011, Journal of Materials Science.

[53]  Jau-Ho Jean,et al.  Effects of Silver‐Paste Formulation on Camber Development during the Cofiring of a Silver‐Based, Low‐Temperature‐Cofired Ceramic Package , 2005 .

[54]  R. Pullar,et al.  A mechanism for low-temperature sintering , 2006 .

[55]  I. Aksay,et al.  Thermodynamics of densification of powder compact , 2009 .

[56]  M. Hrovat,et al.  Thick-film NTC thermistors and LTCC materials: The dependence of the electrical and microstructural characteristics on the firing temperature , 2007 .

[57]  H. Rezaie,et al.  Crystallization and sintering characteristics of CaO–Al2O3–SiO2 glasses in the presence of TiO2, CaF2 and ZrO2 , 2009 .

[58]  A. Kipka,et al.  Zero Shrinkage of LTCC by Self‐Constrained Sintering , 2005 .

[59]  文男 内木場,et al.  Multilayered Low Temperature Cofired Ceramics (LTCC) Technology, 著者 Yoshihiko Imanaka, 出版社 Springer Science+Business Media Inc./USA, 発行年 2005年, ISBN 0-387-23130-7, $129.00 , 2005 .

[60]  S. Gangal,et al.  Silver thick film pastes for low temperature co‐fired ceramics: impact of glass frit variation , 2008 .

[61]  Wen-Hsi Lee,et al.  Low‐Temperature Sintering and Microwave Dielectric Properties of Anorthite‐Based Glass‐Ceramics , 2002 .

[62]  C. B. Carter,et al.  Faceting Behavior of Alumina in the Presence of a Glass , 1990 .

[63]  W. Kaysser,et al.  Growth of Mo grains around Al2O3 particles during liquid phase sintering , 1985 .