Voronoi diagrams of moving points in the plane and of lines in space: tight bounds for simple configurations
暂无分享,去创建一个
Klara Kedem | L. Paul Chew | Amit Weisman | L. Chew | K. Kedem | A. Weisman
[1] Micha Sharir,et al. Voronoi diagrams of lines in 3-space under polyhedral convex distance functions , 1995, SODA '95.
[2] Richard C. T. Lee,et al. Voronoi Diagrams of Moving Points in the Plane , 1990, FSTTCS.
[3] Boris Aronov,et al. A lower bound on Voronoi diagram complexity , 2002, Inf. Process. Lett..
[4] Leonidas J. Guibas,et al. Voronoi Diagrams of Moving Points in the Plane , 1991, WG.
[5] Richard C. T. Lee,et al. Voronoi diagrams of moving points in the plane , 1990, Int. J. Comput. Geom. Appl..
[6] Micha Sharir,et al. 3-Dimensional Euclidean Voronoi Diagrams of Lines with a Fixed Number of Orientations , 2003, SIAM J. Comput..
[7] Mariette Yvinec,et al. Voronoi Diagrams in Higher Dimensions under Certain Polyhedral Distance Functions , 1995, SCG '95.
[8] L. Paul Chew,et al. Near-quadratic Bounds for the L1Voronoi Diagram of Moving Points , 1993, Comput. Geom..
[9] Ren-Hong Wang,et al. On computational geometry , 2003 .
[10] M. Sharir,et al. Pipes, Cigars, and Kreplach: the Union of Minkowski Sums in Three Dimensions , 2000 .
[11] Vladlen Koltun. Ready, Set, Go! The Voronoi diagram of moving points that start from a line , 2004, Inf. Process. Lett..
[12] Raimund Seidel,et al. The Upper Bound Theorem for Polytopes: an Easy Proof of Its Asymptotic Version , 1995, Comput. Geom..
[13] Jon M. Kleinberg,et al. Voronoi Diagrams of Rigidly Moving Sets of Points , 1992, Inf. Process. Lett..