Nonparametric rank-based statistics and significance tests for fuzzy data

Nonparametric rank-based statistics depending only on linear orderings of the observations are extended to fuzzy data. The approach relies on the definition of a fuzzy partial order based on the necessity index of strict dominance between fuzzy numbers, which is shown to contain, in a well-defined sense, all the ordinal information present in the original data. A concept of fuzzy set of linear extensions of a fuzzy partial order is introduced, allowing the approximate computation of fuzzy statistics alpha-cutwise using a Markov Chain Monte Carlo simulation approach. The usual notions underlying significance tests are also extended, leading to the concepts of fuzzy p-value, and graded rejection of the null hypothesis (quantified by a degree of possibility and a degree of necessity) at a given significance level. This general approach is demonstrated in two special cases: Kendall's rank correlation coefficient, and Wilcoxon's two-sample rank sum statistic.

[1]  María Asunción Lubiano,et al.  Two-sample hypothesis tests of means of a fuzzy random variable , 2001, Inf. Sci..

[2]  Przemyslaw Grzegorzewski,et al.  Testing statistical hypotheses with vague data , 2000, Fuzzy Sets Syst..

[3]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[4]  C. F. Kossack,et al.  Rank Correlation Methods , 1949 .

[5]  W Pan A two-sample test with interval censored data via multiple imputation. , 2000, Statistics in medicine.

[6]  D. Ralescu,et al.  Statistical Modeling, Analysis and Management of Fuzzy Data , 2001 .

[7]  Wei Pan,et al.  Rank invariant tests with left truncated and interval censored data , 1998 .

[8]  E. Dudewicz,et al.  Modern Mathematical Statistics. , 1990 .

[9]  Martin E. Dyer,et al.  Faster random generation of linear extensions , 1999, SODA '98.

[10]  Stephen E. Fienberg,et al.  Testing Statistical Hypotheses , 2005 .

[11]  Peter Haddawy,et al.  Similarity of personal preferences: Theoretical foundations and empirical analysis , 2003, Artif. Intell..

[12]  Lotfi A. Zadeh,et al.  Similarity relations and fuzzy orderings , 1971, Inf. Sci..

[13]  R. Kruse,et al.  Statistics with vague data , 1987 .

[14]  S. Ovchinnikov An Introduction to Fuzzy Relations , 2000 .

[15]  Abraham Kandel,et al.  Statistical tests for fuzzy data , 1995 .

[16]  María Angeles Gil,et al.  The likelihood ratio test for goodness of fit with fuzzy experimental observations , 1989, IEEE Trans. Syst. Man Cybern..

[17]  R. Słowiński Fuzzy sets in decision analysis, operations research and statistics , 1999 .

[18]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[19]  Rudolf Kruse,et al.  Fuzzy set-theoretic methods in statistics , 1999 .

[20]  D. Dubois,et al.  Fuzzy Sets: History and Basic Notions , 2000 .

[21]  Robert Gentleman,et al.  Order Theory and Nonparametric Maximum Likelihood for Interval Censored Data , 1998 .

[22]  Willem Albers,et al.  Combined rank tests for randomly censored paired data , 1988 .

[23]  J. M. Bevan,et al.  Rank Correlation Methods , 1949 .

[24]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[25]  Bernhard F. Arnold Testing fuzzy hypotheses with crisp data , 1998, Fuzzy Sets Syst..

[26]  Seyed Mahmoud Taheri,et al.  A Bayesian approach to fuzzy hypotheses testing , 2001, Fuzzy Sets Syst..

[27]  G. Neuhaus,et al.  A method of constructing rank tests in survival analysis , 2000 .

[28]  Hans Bandemer,et al.  Fuzzy Data Analysis , 1992 .