Emission of Characteristic L and K Radiation from Thick Tungsten Targets

A method is proposed for calculating L and K photon emission from thick tungsten targets bombarded by electrons accelerated by potentials of 12–300 kV. Electron energy losses, electron backscatter losses, and photon attenuation in the target are included. Agreement with measured K emission is obtained using the Arthurs‐Moiseiwitsch ionization cross sections and an expression of the form CZ(E0−k) 1−exp(−3k/EK)(k/E0)1/3 1−exp(−E0/EK) to describe the bremsstrahlung energy distribution. Satisfactory agreement with L‐emission measurements is obtained using the Mott‐Massey cross‐section formula with constants BLi=4 ELi, bLI=0.25×1.6, bLII=0.25×2.75, and bLIII=0.25×4.2. Indirect radiation contributes 54–82% of the total K emission and 5–8% of the total L emission. The Webster‐Clark empirical relation Ii=Ci(U0−1)ni agrees with calculation for U0<3, with CK=5.1×1011 photon/sec mA sr, nK=1.67, CL=2.6×1011 photon/sec mA sr, and nL=1.5.

[1]  M. Unsworth,et al.  Experimental continuous and L-characteristic x-ray spectra for tungsten target tubes operated at 15 to 30kV. , 1970, Physics in Medicine and Biology.

[2]  Lellery Storm,et al.  Photon cross sections from 1 keV to 100 MeV for elements Z=1 to Z=100 , 1970 .

[3]  R. W. Fink,et al.  Atomic fluorescence yields , 1966 .

[4]  W. Hink Die absolute Intensität der durch Elektronenstoß in einer dicken Wolfram-Antikathode erzeugtenLα-Strahlung , 1965 .

[5]  W. Hink Die absolute Intensität der durch Elektronenstoß in einer dicken Cu-Antikathode erzeugtenKα-Strahlung , 1964 .

[6]  M Green,et al.  The angular distribution of characteristic x radiation and its origin within a solid target , 1964 .

[7]  V. Cosslett,et al.  THE EFFICIENCY OF PRODUCTION OF CHARACTERISTIC X-RADIATION IN THICK TARGETS OF A PURE ELEMENT , 1961 .

[8]  H. Perlman The Relativistic Theory of K Ionization by Electrons , 1960 .

[9]  N. Dyson The Continuous X-ray Spectrum from Electron-opaque Targets , 1959 .

[10]  A. Arthurs,et al.  The K-shell ionization of atoms by high-energy electrons , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[11]  G. Hettinger,et al.  Bremsstrahlung spectra from roentgen tubes. , 1958, Acta radiologica.

[12]  C. R. Worthington,et al.  The Intensity of Emission of Characteristic X-Radiation , 1956 .

[13]  H. Kulenkampff,et al.  Energieverteilung rückdiffundierter Elektronen , 1954 .

[14]  Ernest J. Sternglass,et al.  Backscattering of Kilovolt Electrons from Solids , 1954 .

[15]  H. Kulenkampff,et al.  ENERGY DISTRIBUTION OF REDIFFUSED ELECTRONS , 1954 .

[16]  W. A. Jennings A theoretical study of radiation outputs and qualities from a beryllium window tube operated at low kilovoltages (10-50 kVp). , 1953, The British journal of radiology.

[17]  H. Massey,et al.  The inner shell ionization of atoms by electron impact , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  W. Heitler,et al.  On the Stopping of Fast Particles and on the Creation of Positive Electrons , 1934 .

[19]  D. L. Webster Direct and Indirect Production of Characteristic X-Rays. , 1927, Proceedings of the National Academy of Sciences of the United States of America.

[20]  D. L. Webster,et al.  The Intensities of X-Rays of the L Series. , 1917, Proceedings of the National Academy of Sciences of the United States of America.

[21]  H. Kolbenstvedt,et al.  SIMPLE THEORY FOR K IONIZATION BY RELATIVISTIC ELECTRONS. , 1967 .

[22]  D. Rester,et al.  K-SHELL IONIZATION OF Ag, Sn, AND Au FROM ELECTRON BOMBARDMENT. , 1966 .

[23]  N. F. Mott,et al.  The theory of atomic collisions , 1949 .

[24]  J. O. Brand Über die Energieverteilung rückdiffundierter Kathodenstrahlen , 1936 .