Infrared Properties of Solid Titanium Oxides: Exploring Potential Primary Dust Condensates

We present optical constants and opacities of solid TiO2 ,T i 2O3, magnesium and calcium titanates, largely based on laboratory measurements. These dust species deserve interest as potential primary condensates in oxygen-rich dusty environments. Of the three known solid TiO2 phases, only one (rutile) has been extensively studied so far with respect to its mid-IR optical properties. We compare these with our measurements of the optical constants of anatase, brookite, and CaTiO3. Furthermore, for several Mg-Ti-oxides, powder transmission spectra are shown. While all known TiO2 modifications have their strongest bands between 13 and 13.5 lm (for spherical particles), CaTiO3, MgTiO3, and other Mg titanates have principal maxima of their absorption coefficients between 14 and 19 lm. This makes a spectroscopic identification of circumstellar Ti oxide particles rather difficult, because both the 13 and the 14–19 lm region are crowded with other features in the spectra of oxygen-rich circumstellar shells. Subject headings: circumstellar matter — methods: laboratory — molecular data — solar system: formation — stars: AGB and post-AGB — stars: mass loss

[1]  JOHN S. Lewis,et al.  Chemistry of Primitive Solar Material , 1976 .

[2]  E. Sedlmayr,et al.  Self-consistent modeling of the outflow from the O-rich Mira IRC –20197 , 2003 .

[3]  T. Posch,et al.  On the origin of the 19.5 $\mathsf{\mu}$m feature - Identifying circumstellar Mg-Fe-oxides , 2002 .

[4]  R. Klein,et al.  Dust in brown dwarfs - I. Dust formation under turbulent conditions on microscopic scales , 2001 .

[5]  L. Dubrovinsky,et al.  An Ultradense Polymorph of Rutile with Seven-Coordinated Titanium from the Ries Crater , 2001, Science.

[6]  G. Lucovsky,et al.  ir reflectance spectra of Ti 2 O 3 : Infrared-active phonons and Ti 3 d electronic effects , 1977 .

[7]  A. Tielens,et al.  The circumstellar envelope of the C-rich post-AGB star HD 56126 , 2003, astro-ph/0302448.

[8]  M. W. Ribarsky Titanium Dioxide (TiO2) (Rutile) , 1997 .

[9]  J. Larimer Chemical fractionations in meteorites—I. Condensation of the elements , 1967 .

[10]  D. Ebel,et al.  Condensation in dust-enriched systems , 2023, 2307.00641.

[11]  J. Banfield,et al.  Conversion of perovskite to anatase and TiO 2 (B); a TEM study and the use of fundamental building blocks for understanding relationships among the TiO 2 minerals , 1992 .

[12]  E. Salpeter FORMATION AND DESTRUCTION OF DUST GRAINS , 1977 .

[13]  S. Hony,et al.  Titanium carbide nanocrystals in circumstellar environments. , 2000, Science.

[14]  B. Reynard,et al.  High-temperature properties of geikielite (MgTiO3-ilmenite) from high-temperature high-pressure Raman spectroscopy — Some implications for MgSiO3-ilmenite , 1994 .

[15]  W. Tröger Optische Bestimmung der gesteinsbildenden Minerale. , 1969 .

[16]  F. Gervais,et al.  Anharmonicity in several-polar-mode crystals: adjusting phonon self-energy of LO and TO modes in Al2O3 and TiO2 to fit infrared reflectivity , 1974 .

[17]  H. Gail,et al.  Inorganic dust formation in astrophysical environments , 1998 .

[18]  Franz Kerschbaum,et al.  Infrared optical properties of spinels A study of the carrier of the 13, 17 and 32m emission features observed in ISO-SWS spectra of oxygen-rich AGB stars ? , 2001 .

[19]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[20]  J. Goebel,et al.  Guilt by Association: The 13 Micron Dust Emission Feature and Its Correlation to Other Gas and Dust Features , 2003 .

[21]  P. Hauschildt,et al.  Grains in the Atmospheres of Red Giant Stars , 2001 .

[22]  E. Sedlmayr,et al.  Electronic structure investigation of neutral titanium oxide molecules TixOy , 2000 .

[23]  B. Fegley,et al.  Constraints on Stellar Grain Formation from Presolar Graphite in the Murchison Meteorite , 1996 .

[24]  E. Baran,et al.  Die IR‐Spektren einiger Doppeloxide mit Ilmenit‐Struktur , 1978 .

[25]  Helmuth Berger,et al.  Infrared reflectivity and lattice fundamentals in anatase TiO 2 s , 1997 .

[26]  T. Kozasa,et al.  Formation of crystalline silicate around oxygen-rich AGB stars , 1999 .

[27]  L. Nittler Presolar stardust in meteorites : recent advances and scientific frontiers , 2003 .

[28]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[29]  A. Burrows,et al.  Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres , 1999 .

[30]  R. C. Peterson,et al.  Study of the cubic to tetragonal transition in Mg2TiO4 and Zn2TiO4 spinels by 17O MAS NMR and Rietveld refinement of X-ray diffraction data , 1995 .

[31]  B. A. Wechsler,et al.  Structure refinements of Mg2TiO4, MgTiO3 and MgTi2O5 by time-of-flight neutron powder diffraction , 1989 .

[32]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[33]  A. Schuster On the absorption and scattering of light , 1920 .

[34]  A. Brearley Occurrence and possible significance of rare Ti oxides (Magneli phases) in carbonaceous chondrite matrices , 1993 .

[35]  Doo Jin Choi,et al.  Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties , 2001 .

[36]  François Gervais,et al.  Temperature dependence of transverse- and longitudinal-optic modes in TiO 2 (rutile) , 1974 .

[37]  T. Kozasa,et al.  Formation Conditions of Presolar TiC Core-Graphite Mantle Spherules in the Murchison Meteorite , 1999 .