Sharp Estimates for the Number of Degrees of Freedom for the Damped-Driven 2-D Navier-Stokes Equations

AbstractWe derive upper bounds for the number of asymptotic degrees (determining modes and nodes) of freedom for the two-dimensional Navier-Stokes system and Navier-Stokes system with damping. In the first case we obtain the previously known estimates in an explicit form, which are larger than the fractal dimension of the global attractor. However, for the Navier-Stokes system with damping, our estimates for the number of the determining modes and nodes are comparable to the sharp estimates for the fractal dimension of the global attractor. Our investigation of the damped-driven 2-D Navier-Stokes system is inspired by the Stommel-Charney barotropic model of ocean circulation where the damping represents the Rayleigh friction. We remark that our results equally apply to the viscous Stommel-Charney model.

[1]  M. Vishik,et al.  Attractors of Evolution Equations , 1992 .

[2]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[3]  A. Ilyin ATTRACTORS FOR NAVIER-STOKES EQUATIONS IN DOMAINS WITH FINITE MEASURE , 1996 .

[4]  Meinhard E. Mayer,et al.  Navier-Stokes Equations and Turbulence , 2008 .

[5]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[6]  E. Titi,et al.  Small viscosity sharp estimates for the global attractor of the 2-D damped-driven Navier-Stokes equations , 2004 .

[7]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[8]  L. V. Taikov Kolmogorov-type inequalities and the best formulas for numerical differentiation , 1968 .

[9]  H. Stommel,et al.  The westward intensification of wind‐driven ocean currents , 1948 .

[10]  R. Temam,et al.  Asymptotic analysis of the navier-stokes equations , 1983 .

[11]  Michael Holst,et al.  Determining Projections and Functionals for Weak Solutions of the Navier-Stokes Equations , 2010, 1001.1357.

[12]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[13]  Nodal parametrisation of analytic attractors , 2001 .

[14]  J. Charney THE GULF STREAM AS AN INERTIAL BOUNDARY LAYER. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[15]  V. Chepyzhov,et al.  On the fractal dimension of invariant sets; applications to Navier-Stokes equations. , 2003 .

[16]  A. Ilyin Best constants in a class of polymultiplicative inequalities for derivatives , 1998 .

[17]  Donald A. Jones,et al.  Determining finite volume elements for the 2D Navier-Stokes equations , 1992 .

[18]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[19]  J. Saut Remarks on the damped stationary Euler equations , 1990, Differential and Integral Equations.

[20]  A. A. Il’in,et al.  Lieb-Thirring integral inequalities and their applications to attractors of the Navier-Stokes equations , 2005 .

[21]  Shouhong Wang,et al.  Hopf Bifurcation in Quasi-geostrophic Channel Flow , 2003, SIAM J. Appl. Math..

[22]  Dean A. Jones,et al.  On the number of determining nodes for the 2D Navier-Stokes equations , 1992 .

[23]  A. A. Il’in THE EULER EQUATIONS WITH DISSIPATION , 1993 .

[24]  Estimates of asymptotic degrees of freedom for solutions to the Navier-Stokes equations , 2000 .

[25]  Mathematics of Climate Modeling , 1997 .

[26]  Peter K. Friz,et al.  Parametrising the attractor of the two-dimensional Navier-Stokes equations with a finite number of nodal values , 2001 .

[27]  Bernardo Cockburn,et al.  Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems , 1997, Math. Comput..

[28]  Shing-Tung Yau,et al.  On the Schrödinger equation and the eigenvalue problem , 1983 .

[29]  Gershon Wolansky,et al.  Existence, uniqueness, and stability of stationary barotropic flow with forcing and dissipation , 1988 .

[30]  Bernardo Cockburn,et al.  Determining degrees of freedom for nonlinear dissipative equations , 1995 .

[31]  R. Temam,et al.  Determination of the solutions of the Navier-Stokes equations by a set of nodal values , 1984 .

[32]  Igor Chueshov,et al.  Theory of functionals that uniquely determine the asymptotic dynamics of infinite-dimensional dissipative systems , 1998 .

[33]  Brian R. Hunt,et al.  Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces , 1999 .

[34]  R. Temam Navier-Stokes Equations , 1977 .

[35]  C. Foiaș,et al.  Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .

[36]  E. Olson,et al.  Finite fractal dimension and Holder-Lipshitz parametrization , 1996 .