Sharp Estimates for the Number of Degrees of Freedom for the Damped-Driven 2-D Navier-Stokes Equations
暂无分享,去创建一个
[1] M. Vishik,et al. Attractors of Evolution Equations , 1992 .
[2] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[3] A. Ilyin. ATTRACTORS FOR NAVIER-STOKES EQUATIONS IN DOMAINS WITH FINITE MEASURE , 1996 .
[4] Meinhard E. Mayer,et al. Navier-Stokes Equations and Turbulence , 2008 .
[5] J. Pedlosky. Geophysical Fluid Dynamics , 1979 .
[6] E. Titi,et al. Small viscosity sharp estimates for the global attractor of the 2-D damped-driven Navier-Stokes equations , 2004 .
[7] R. A. Silverman,et al. The Mathematical Theory of Viscous Incompressible Flow , 1972 .
[8] L. V. Taikov. Kolmogorov-type inequalities and the best formulas for numerical differentiation , 1968 .
[9] H. Stommel,et al. The westward intensification of wind‐driven ocean currents , 1948 .
[10] R. Temam,et al. Asymptotic analysis of the navier-stokes equations , 1983 .
[11] Michael Holst,et al. Determining Projections and Functionals for Weak Solutions of the Navier-Stokes Equations , 2010, 1001.1357.
[12] S. Agmon. Lectures on Elliptic Boundary Value Problems , 1965 .
[13] Nodal parametrisation of analytic attractors , 2001 .
[14] J. Charney. THE GULF STREAM AS AN INERTIAL BOUNDARY LAYER. , 1955, Proceedings of the National Academy of Sciences of the United States of America.
[15] V. Chepyzhov,et al. On the fractal dimension of invariant sets; applications to Navier-Stokes equations. , 2003 .
[16] A. Ilyin. Best constants in a class of polymultiplicative inequalities for derivatives , 1998 .
[17] Donald A. Jones,et al. Determining finite volume elements for the 2D Navier-Stokes equations , 1992 .
[18] Richard E. Mortensen,et al. Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..
[19] J. Saut. Remarks on the damped stationary Euler equations , 1990, Differential and Integral Equations.
[20] A. A. Il’in,et al. Lieb-Thirring integral inequalities and their applications to attractors of the Navier-Stokes equations , 2005 .
[21] Shouhong Wang,et al. Hopf Bifurcation in Quasi-geostrophic Channel Flow , 2003, SIAM J. Appl. Math..
[22] Dean A. Jones,et al. On the number of determining nodes for the 2D Navier-Stokes equations , 1992 .
[23] A. A. Il’in. THE EULER EQUATIONS WITH DISSIPATION , 1993 .
[24] Estimates of asymptotic degrees of freedom for solutions to the Navier-Stokes equations , 2000 .
[25] Mathematics of Climate Modeling , 1997 .
[26] Peter K. Friz,et al. Parametrising the attractor of the two-dimensional Navier-Stokes equations with a finite number of nodal values , 2001 .
[27] Bernardo Cockburn,et al. Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems , 1997, Math. Comput..
[28] Shing-Tung Yau,et al. On the Schrödinger equation and the eigenvalue problem , 1983 .
[29] Gershon Wolansky,et al. Existence, uniqueness, and stability of stationary barotropic flow with forcing and dissipation , 1988 .
[30] Bernardo Cockburn,et al. Determining degrees of freedom for nonlinear dissipative equations , 1995 .
[31] R. Temam,et al. Determination of the solutions of the Navier-Stokes equations by a set of nodal values , 1984 .
[32] Igor Chueshov,et al. Theory of functionals that uniquely determine the asymptotic dynamics of infinite-dimensional dissipative systems , 1998 .
[33] Brian R. Hunt,et al. Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces , 1999 .
[34] R. Temam. Navier-Stokes Equations , 1977 .
[35] C. Foiaș,et al. Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .
[36] E. Olson,et al. Finite fractal dimension and Holder-Lipshitz parametrization , 1996 .