Construction and Evaluation of Cohort Based Model for Predicting Population Dynamics of Riptortus pedestris (Fabricicus) (Hemiptera: Alydidae) Using DYMEX

ABSTRACT: A Cohort based model for temperature-dependent population dynacmics of Riptortus pedestris was constructed by usinga commercial software (DYMEX) and seasonal occurrence along with pesticide treatments effect was simulated and validated with pheromone trap data. Ten modules of DYMEX software were used to construct the model and Lifecycle module was consisted of seve ndevelopmental stages (egg, 1 - 5 nymphal instars, and adult) of R. pedestirs . Simulated peaks of adult populations occurred three or fou rtimes after the peak of overwintered populations which was similar to those observed from pheromone trap catch. Estimated dates forthe second peak were quite similar (1-2 day difference) with those observed with pheromone trap. However, the estimated dates f or thefirst population peak were 9-16 days later than the observed dates by pheromone trap and the estimated dates for the last peak were 17-2 3days earlier than the observed dates. When insecticide treatments were included in the simulation, the biggest decrease in R. pedestris adult density occurred when insecticide was applied on July 1 for the first peak population: the estimated adult density of the second pea k was 3% of untreated population density. When insecticide was assumed to be applied on August 30 for the second peak population, theestimated adult density of the following generation was about 25% of untreated population and the peak density of the following generation reached about two weeks later than untreated population. These results can be used for the efficient management stra tegies for the populations of R. pedestris.Key words: Riptortus pedestris, DYMEX, Population dynamics model, Simulation초 록: 온도에 따른 톱다리개미허리노린재 (Riptortus pedestris)의 개체군 밀도 변동 예측 모델을 상용 소프트웨어인 DYMEX로 구축하고 월동 성충밀도를 바탕으로 한 연간 발생 밀도 변동 패턴과 살충제 처리 시기에 따른 밀도 억제 효과를 시뮬레이션하였다 . 구축된 모델은 총 10개의 모듈을사용하였으며, Lifecycle 모듈은 알, 1, 2, 3, 4, 5령, 성충의 7개 발육 단계로 구성하였다. 월동 성충 개체군의 포획시기를 이용하여 연중 밀도 변동을 예측한 결과 연도에 따라 3~4번의 신 성충 발생이 가능하여 페로몬 트랩 포획밀도 조사와 유사하였다. 콩 포장으로 침입해 들어오는 두 번째 신성충의 경우 개발된 모델을 이용하여 예측된 성충 발생 최성일이 페로몬 트랩으로 조사된 포획 밀도 최성기와 거의 일치 하였다 . 그러나 예측된 첫 번째 신 성충 발생 최성일은 페로몬트랩 포획 최성기보다 연도에 따라 9~16일 늦었으며, 마지막 세대의 발생 최성일은 연도에 따라 페로몬 트랩 포획 최성기보다 17~23일 빨랐다. 살충제 사용을 가정한 첫 번째 신성충 개체군 밀도 억제가 다음 세대들의 밀도 증가에 미치는 영향을 시뮬레이션 한 결과, 신 성충 발생 초기일수록 밀도 억제효과가 커서 7월 1일 살충제 처리를 가정하였을 때 다음 세대에 형성된 성충은 무처리의 3% 정도로 현저하게 낮았다. 또한 포장에 침입해 들어오는 두 번째 신성충 개체군을 대상으로 시기별 살충제 처리 효과를 시뮬레이션한 결과 8월 30일 살충제 처리를 가정한 경우 다음세대 성충 최고 밀도는 무처리의 25% 정도로 줄었고, 최고 밀도에 도달한 시기도 무처리에 비해 2주 이상 늦었다. 이상의 연구 결과들은 톱다리개미허리노린재의 효율적인 종합적 방제 계획을 세우는데 유용하게 사용될 수 있을 것으로 기대된다 .검색어: 톱다리개미허리노린재, DYMEX, 개체군 밀도변동 모델, 시뮬레이션*Corresponding author: changgpark@korea.krReceived February 10 2015; Revised March 30 2015Accepted April 15 2015

[1]  Chang-Gyu Park,et al.  Evaluation of three plant seeds as potential pre-season diets for Riptortus pedestris , 2014 .

[2]  Seon-Gon Kim,et al.  Temperature-dependent Development Model of Larvae of Mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae) , 2013 .

[3]  Kijong Cho,et al.  Modeling and Validation of Population Dynamics of the American Serpentine Leafminer (Liriomyza trifolii) Using Leaf Surface Temperatures of Greenhouses Cherry Tomatoes , 2012 .

[4]  Gil‐Hah Kim,et al.  Seasonal Fluctuation of Riptortus pedestris (Hemiptera: Alydidae) in Chungbuk Province , 2012 .

[5]  N. Endo,et al.  Seasonal synchrony between pheromone trap catches of the bean bug, Riptortus pedestris (Heteroptera: Alydidae) and the timing of invasion of soybean fields , 2011, Applied Entomology and Zoology.

[6]  T. Tsunoda,et al.  Seasonal Abundance of the Bean Bug, Riptortus pedestris (Heteroptera: Alydidae) in Some Leguminous Plants , 2011 .

[7]  Joon-Ho Lee,et al.  Temperature-dependent development and oviposition models of Riptortus clavatus (Thunberg) (Hemiptera: Alydidae) , 2009 .

[8]  C. Jung,et al.  Flight behavior of the bean bug, Riptortus clavatus (Thunberg) (Hemiptera: Alydidae), relative to adult age, sex and season , 2009 .

[9]  S. Moriya,et al.  Seasonal Catches of the Bean Bug, Riptortus clavatus (Thunberg) (Heteroptera: Alydidae), in Water-pan Traps with Synthetic Attractants. , 2005 .

[10]  Jong-ho Park,et al.  Soybean Seed Injury by the Bean Bug, Riptortus clavatus (Thunberg) (Hemiptera: Alydidae) at Reproductive Stage of Soybean (Glycine max Linnaeus) , 2005 .

[11]  Hye-Soon Huh,et al.  Seasonal Occurrence and Ovarian Development of Bean Bug, Riptortus clavatus , 2005 .

[12]  Lee GeonHwi,et al.  Seasonal Occurrence, Soybean Damage and Control Efficacy of Bean Bug, Riptortus clavatus Thunberg (Hemiptera: Alydidae) at soybean Field in Honam Province , 2004 .

[13]  M. L. Boyd,et al.  Delayed Maturity Associated with Southern Green Stink Bug (Heteroptera: Pentatomidae) Injury at Various Soybean Phenological Stages , 2000, Journal of economic entomology.

[14]  Choi BooSull,et al.  Field occurrence of stink bug and its damage in soybean. , 2000 .

[15]  C. Hwang,et al.  Effect of temperature on the development of the bean bug, Riptortus clavatus Thunberg (Hemiptera : Alydidae) , 1997 .

[16]  S. Kono Number of annual generations of the bean bug, Riptortus clavatus Thunberg (Heteroptera: Alydidae) estimated by physiological characteristic. , 1989 .

[17]  S. Kono Analysis of soybean seed injuries caused by three species of stink bugs. , 1989 .