The subdivision-based IGA-EIEQ numerical scheme for the binary surfactant Cahn–Hilliard phase-field model on complex curved surfaces

[1]  Xiaofeng Yang Fully-discrete, decoupled, second-order time-accurate and energy stable finite element numerical scheme  of the Cahn-Hilliard binary surfactant model confined in the Hele-Shaw cell , 2022, ESAIM: Mathematical Modelling and Numerical Analysis.

[2]  T. Rabczuk,et al.  Subdivision based isogeometric analysis for geometric flows , 2021, International Journal for Numerical Methods in Engineering.

[3]  H. Nguyen-Xuan,et al.  A hybrid phase-field isogeometric analysis to crack propagation in porous functionally graded structures , 2021, Engineering with Computers.

[4]  Xiaofeng Yang,et al.  Subdivision-based isogeometric analysis for second order partial differential equations on surfaces , 2021, Computational Mechanics.

[5]  Xiaofeng Yang,et al.  On a novel full decoupling, linear, second‐order accurate, and unconditionally energy stable numerical scheme for the anisotropic phase‐field dendritic crystal growth model , 2021, International Journal for Numerical Methods in Engineering.

[6]  Xiaofeng Yang,et al.  On a Novel Fully Decoupled, Second-Order Accurate Energy Stable Numerical Scheme for a Binary Fluid-Surfactant Phase-Field Model , 2021, SIAM J. Sci. Comput..

[7]  Xin Li,et al.  Tuned hybrid nonuniform subdivision surfaces with optimal convergence rates , 2020, International Journal for Numerical Methods in Engineering.

[8]  Xiaofeng Yang A novel fully-decoupled, second-order and energy stable numerical scheme of the conserved Allen–Cahn type flow-coupled binary surfactant model , 2021 .

[9]  Xiaofeng Yang,et al.  Efficient, second oder accurate, and unconditionally energy stable numerical scheme for a new hydrodynamics coupled binary phase-field surfactant system , 2020, Comput. Phys. Commun..

[10]  Xinlong Feng,et al.  An efficient time adaptivity based on chemical potential for surface Cahn-Hilliard equation using finite element approximation , 2020, Appl. Math. Comput..

[11]  Timon Rabczuk,et al.  Isogeometric analysis for surface PDEs with extended Loop subdivision , 2019, J. Comput. Phys..

[12]  Guoliang Xu,et al.  Isogeometric analysis of minimal surfaces on the basis of extended Catmull–Clark subdivision , 2018, Computer Methods in Applied Mechanics and Engineering.

[13]  Xiaofeng Yang,et al.  Efficient Second Order Unconditionally Stable Schemes for a Phase Field Moving Contact Line Model Using an Invariant Energy Quadratization Approach , 2017, SIAM J. Sci. Comput..

[14]  Xiaofeng Yang,et al.  Numerical Approximations for the Cahn–Hilliard Phase Field Model of the Binary Fluid-Surfactant System , 2017, Journal of Scientific Computing.

[15]  Xiaofeng Yang,et al.  Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method , 2017 .

[16]  Guoliang Xu,et al.  Isogeometric finite element approximation of minimal surfaces based on extended loop subdivision , 2017, J. Comput. Phys..

[17]  Xiaofeng Yang,et al.  A novel linear second order unconditionally energy stable scheme for a hydrodynamic Q-tensor model of liquid crystals , 2017 .

[18]  Lili Ju,et al.  Linear and unconditionally energy stable schemes for the binary fluid–surfactant phase field model , 2017, 1701.07446.

[19]  Xiaofeng Yang,et al.  Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends , 2016, J. Comput. Phys..

[20]  Hector Gomez,et al.  Liquid-vapor transformations with surfactants. Phase-field model and Isogeometric Analysis , 2016, J. Comput. Phys..

[21]  Guoliang Xu,et al.  Isogeometric analysis based on extended Catmull-Clark subdivision , 2016, Comput. Math. Appl..

[22]  Guoliang Xu,et al.  Isogeometric analysis based on extended Loop's subdivision , 2015, J. Comput. Phys..

[23]  T. Ogino,et al.  Phase separation in lipid bilayer membranes induced by intermixing at a boundary of two phases with different components. , 2015, Chemistry and physics of lipids.

[24]  Thomas J. R. Hughes,et al.  Truncated hierarchical Catmull–Clark subdivision with local refinement , 2015 .

[25]  Hui Zhang,et al.  An energy-stable finite-difference scheme for the binary fluid-surfactant system , 2014, J. Comput. Phys..

[26]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[27]  Davide Marenduzzo,et al.  Phase separation dynamics on curved surfaces , 2013 .

[28]  Junseok Kim Phase-Field Models for Multi-Component Fluid Flows , 2012 .

[29]  I-Liang Chern,et al.  Simulating binary fluid-surfactant dynamics by a phase field model , 2012 .

[30]  Qiang Du,et al.  Finite element approximation of the Cahn–Hilliard equation on surfaces , 2011 .

[31]  Frederick A. Heberle,et al.  Phase separation in lipid membranes. , 2011, Cold Spring Harbor perspectives in biology.

[32]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[33]  Hongwei Lin,et al.  Watertight trimmed NURBS , 2008, ACM Trans. Graph..

[34]  I. Fonseca,et al.  Surfactants in Foam Stability: A Phase-Field Model , 2007 .

[35]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[36]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[37]  R. V. D. Sman,et al.  Diffuse interface model of surfactant adsorption onto flat and droplet interfaces , 2006 .

[38]  Cheng-han Yu,et al.  Curvature-modulated phase separation in lipid bilayer membranes. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[39]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[40]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[41]  Jie Shen,et al.  A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method , 2003 .

[42]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[43]  Jonathan Goodman,et al.  Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime , 2002 .

[44]  Daisuke Furihata,et al.  A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.

[45]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[46]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[47]  Hiroya Kodama,et al.  TWO-ORDER-PARAMETER MODEL FOR AN OIL-WATER-SURFACTANT SYSTEM , 1997 .

[48]  C. M. Elliott,et al.  On the Cahn-Hilliard equation with degenerate mobility , 1996 .

[49]  Laradji,et al.  Molecular dynamics simulations of phase separation in the presence of surfactants. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Charles M. Elliott,et al.  Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy , 1992 .

[51]  Mohamed Laradji,et al.  The effect of surfactants on the dynamics of phase separation , 1992 .

[52]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .