The winged-helix DNA-binding motif: Another helix-turn-helix takeoff

[1]  S. Burley,et al.  Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5 , 1993, Nature.

[2]  T. Ceska,et al.  The X-ray structure of an atypical homeodomain present in the rat liver transcription factor LFB1/HNF1 and implications for DNA binding. , 1993 .

[3]  K. Wüthrich,et al.  The three‐dimensional NMR‐solution structure of the polypeptide fragment 195–286 of the LFB1/HNF1 transcription factor from rat liver comprises a nonclassical homeodomain. , 1993, The EMBO journal.

[4]  R. Kaptein,et al.  Solution structure of the POU-specific DNA-binding domain of Oct-1 , 1993, Nature.

[5]  P. Wright,et al.  The solution structure of the Oct-1 POU-specific domain reveals a striking similarity to the bacteriophage λ repressor DNA-binding domain , 1993, Cell.

[6]  V. Ramakrishnan,et al.  Crystal structure of globular domain of histone H5 and its implications for nucleosome binding , 1993, Nature.

[7]  C. Wolberger Transcription factor structure and DNA binding , 1993 .

[8]  R. Brennan DNA recognition by the helix-turn-helix motif , 1992 .

[9]  J. Baldwin Protein-nucleic acid interactions in nucleosomes , 1992 .

[10]  S. Harrison,et al.  A structural taxonomy of DNA-binding domains , 1991, Nature.

[11]  H. Goldberg,et al.  The DNA binding arm of lambda repressor: critical contacts from a flexible region. , 1991, Science.

[12]  W. DeGrado,et al.  DNA-induced increase in the alpha-helical content of C/EBP and GCN4. , 1991, Biochemistry.

[13]  T. Steitz,et al.  Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees , 1991, Science.

[14]  J. Widom Nucleosomes and chromatin , 1991 .

[15]  Carl O. Pabo,et al.  Crystal structure of an engrailed homeodomain-DNA complex at 2.8 Å resolution: A framework for understanding homeodomain-DNA interactions , 1990, Cell.

[16]  Kevin Struhl,et al.  Folding transition in the DMA-binding domain of GCN4 on specific binding to DNA , 1990, Nature.

[17]  M. Caruthers,et al.  Role of the Cro repressor carboxy-terminal domain and flexible dimer linkage in operator and nonspecific DNA binding. , 1990, Biochemistry.

[18]  K Wüthrich,et al.  Protein–DNA contacts in the structure of a homeodomain–DNA complex determined by nuclear magnetic resonance spectroscopy in solution. , 1990, The EMBO journal.

[19]  I. Dodd,et al.  Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. , 1990, Nucleic acids research.

[20]  P. Ingham The X, Y, Z of head development , 1990, Nature.

[21]  P. Sigler,et al.  The stereochemistry and biochemistry of the trp repressor-operator complex. , 1990, Biochimica et biophysica acta.

[22]  S. Harrison,et al.  Conserved residues make similar contacts in two repressor-operator complexes. , 1990, Science.

[23]  B. Matthews,et al.  The helix-turn-helix DNA binding motif. , 1989, The Journal of biological chemistry.

[24]  J. Carey trp repressor arms contribute binding energy without occupying unique locations on DNA. , 1989, The Journal of biological chemistry.

[25]  A. Joachimiak,et al.  Crystal structure of trp represser/operator complex at atomic resolution , 1988, Nature.

[26]  C. Pabo,et al.  The operator-binding domain of λ repressor: structure and DNA recognition , 1982, Nature.

[27]  Thomas A. Steitz,et al.  Structure of catabolite gene activator protein at 2.9 Å resolution suggests binding to left-handed B-DNA , 1981, Nature.

[28]  B. Matthews,et al.  Structure of the cro repressor from bacteriophage λ and its interaction with DNA , 1981, Nature.

[29]  R. Sauer,et al.  Transcription factors: structural families and principles of DNA recognition. , 1992, Annual review of biochemistry.

[30]  Cynthia Wolberger,et al.  Crystal structure of a MAT alpha 2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. , 1991, Cell.