Efficient semiparametric estimator for heteroscedastic partially linear models
暂无分享,去创建一个
[1] Douglas W. Nychka,et al. Splines as Local Smoothers , 1995 .
[2] B. Ripley,et al. Semiparametric Regression: Preface , 2003 .
[3] J. Rice. Convergence rates for partially splined models , 1986 .
[4] Jeng-Min Chiou,et al. Nonparametric quasi-likelihood , 1999 .
[5] Taisuke Otsu. Penalized empirical likelihood estimation of semiparametric models , 2007 .
[6] A. A. Weiss,et al. Semiparametric estimates of the relation between weather and electricity sales , 1986 .
[7] Clive W. J. Granger,et al. Semiparametric estimates of the relation between weather and electricity sales , 1986 .
[8] B. Silverman,et al. Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .
[9] David Ruppert,et al. A Root-n Consistent Backfitting Estimator for Semiparametric Additive Modeling , 1999 .
[10] Wolfgang Härdle,et al. Partially Linear Models , 2000 .
[11] B. Silverman,et al. Spline Smoothing: The Equivalent Variable Kernel Method , 1984 .
[12] Nancy E. Heckman,et al. Spline Smoothing in a Partly Linear Model , 1986 .
[13] B. Silverman,et al. Nonparametric regression and generalized linear models , 1994 .
[14] R. Carroll,et al. Profile‐kernel versus backfitting in the partially linear models for longitudinal/clustered data , 2004 .
[15] W. Härdle,et al. Estimation in a semiparametric partially linear errors-in-variables model , 1999 .
[16] R. Carroll,et al. Equivalent Kernels of Smoothing Splines in Nonparametric Regression for Clustered/Longitudinal Data , 2004 .
[17] Gary Chamberlain,et al. Efficiency Bounds for Semiparametric Regression , 1992 .
[18] Qi Li,et al. A KERNEL-BASED METHOD FOR ESTIMATING ADDITIVE PARTIALLY LINEAR MODELS , 2003 .
[19] Ulrich Stadtmüller,et al. Estimation of Heteroscedasticity in Regression Analysis , 1987 .
[20] B. Silverman,et al. Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .