Efficient semiparametric estimator for heteroscedastic partially linear models

We study the heteroscedastic partially linear model with an unspecified partial baseline component and a nonparametric variance function. An interesting finding is that the performance of a naive weighted version of the existing estimator could deteriorate when the smooth baseline component is badly estimated. To avoid this, we propose a family of consistent estimators and investigate their asymptotic properties. We show that the optimal semiparametric efficiency bound can be reached by a semiparametric kernel estimator in this family. Building upon our theoretical findings and heuristic arguments about the equivalence between kernel and spline smoothing, we conjecture that a weighted partial-spline estimator could also be semiparametric efficient. Properties of the proposed estimators are presented through theoretical illustration and numerical simulations. Copyright 2006, Oxford University Press.

[1]  Douglas W. Nychka,et al.  Splines as Local Smoothers , 1995 .

[2]  B. Ripley,et al.  Semiparametric Regression: Preface , 2003 .

[3]  J. Rice Convergence rates for partially splined models , 1986 .

[4]  Jeng-Min Chiou,et al.  Nonparametric quasi-likelihood , 1999 .

[5]  Taisuke Otsu Penalized empirical likelihood estimation of semiparametric models , 2007 .

[6]  A. A. Weiss,et al.  Semiparametric estimates of the relation between weather and electricity sales , 1986 .

[7]  Clive W. J. Granger,et al.  Semiparametric estimates of the relation between weather and electricity sales , 1986 .

[8]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[9]  David Ruppert,et al.  A Root-n Consistent Backfitting Estimator for Semiparametric Additive Modeling , 1999 .

[10]  Wolfgang Härdle,et al.  Partially Linear Models , 2000 .

[11]  B. Silverman,et al.  Spline Smoothing: The Equivalent Variable Kernel Method , 1984 .

[12]  Nancy E. Heckman,et al.  Spline Smoothing in a Partly Linear Model , 1986 .

[13]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[14]  R. Carroll,et al.  Profile‐kernel versus backfitting in the partially linear models for longitudinal/clustered data , 2004 .

[15]  W. Härdle,et al.  Estimation in a semiparametric partially linear errors-in-variables model , 1999 .

[16]  R. Carroll,et al.  Equivalent Kernels of Smoothing Splines in Nonparametric Regression for Clustered/Longitudinal Data , 2004 .

[17]  Gary Chamberlain,et al.  Efficiency Bounds for Semiparametric Regression , 1992 .

[18]  Qi Li,et al.  A KERNEL-BASED METHOD FOR ESTIMATING ADDITIVE PARTIALLY LINEAR MODELS , 2003 .

[19]  Ulrich Stadtmüller,et al.  Estimation of Heteroscedasticity in Regression Analysis , 1987 .

[20]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .