Powerful solar signatures of long-lived dark mediators

Dark matter capture and annihilation in the Sun can produce detectable high-energy neutrinos, providing a probe of the dark matter-proton scattering cross section. We consider the case when annihilation proceeds via long-lived dark mediators, which allows gamma rays to escape the Sun and reduces the attenuation of neutrinos. For gamma rays, there are exciting new opportunities, due to detailed measurements of GeV solar gamma rays with Fermi, and unprecedented sensitivities in the TeV range with HAWC and LHAASO. For neutrinos, the enhanced flux, particularly at higher energies ($\sim$TeV), allows a more sensitive dark matter search with IceCube and KM3NeT. We show that these search channels can be extremely powerful, potentially improving sensitivity to the dark matter spin-dependent scattering cross section by several orders of magnitude relative to present searches for high-energy solar neutrinos, as well as direct detection experiments.

[1]  Wilczek,et al.  Solar System constraints and signatures for dark-matter candidates. , 1986, Physical review. D, Particles and fields.

[2]  B. Holdom Two U(1)'s and Epsilon Charge Shifts , 1986 .

[3]  J. Silk,et al.  The photino, the sun, and high-energy neutrinos. , 1985, Physical review letters.

[4]  N. Bell,et al.  Enhanced neutrino signals from dark matter annihilation in the Sun via metastable mediators , 2011, 1102.2958.

[5]  K. Kasahara,et al.  Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model , 2015, 1502.03916.

[6]  F. Kahlhoefer,et al.  Implications of unitarity and gauge invariance for simplified dark matter models , 2015, 1510.02110.

[7]  O. Tibolla,et al.  Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory , 2017, 1701.01778.

[8]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[9]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[10]  K. Petraki,et al.  Dark-matter bound states from Feynman diagrams , 2015, Journal of High Energy Physics.

[11]  A. Peter Dark matter in the solar system II: WIMP annihilation rates in the Sun , 2009, 0902.1347.

[12]  S Priya,et al.  Dark Matter Search Results from the PICO-2L C3F8 Bubble Chamber. , 2015, Physical review letters.

[13]  J. Edsjo,et al.  Accurate calculations of the WIMP halo around the Sun and prospects for its gamma-ray detection , 2009, 0910.0017.

[14]  M. Pospelov,et al.  Astrophysical Signatures of Secluded Dark Matter , 2008, 0810.1502.

[15]  D. Morrissey,et al.  New limits on light hidden sectors from fixed-target experiments , 2014, 1402.4817.

[16]  S. Reddy,et al.  Nucleon-nucleon bremsstrahlung of dark gauge bosons and revised supernova constraints , 2015, 1511.09136.

[17]  R. Webb,et al.  First results from the LUX dark matter experiment at the Sanford underground research facility. , 2013, Physical review letters.

[18]  W. Press,et al.  Capture by the sun of a galactic population of weakly interacting massive particles , 1985 .

[19]  M. Pospelov,et al.  Exploring Portals to a Hidden Sector Through Fixed Targets , 2009, 0906.5614.

[20]  Particle decays during the cosmic dark ages , 2003, astro-ph/0310473.

[21]  S. Digel,et al.  Inverse Compton Scattering on Solar Photons, Heliospheric Modulation, and Neutrino Astrophysics , 2006 .

[22]  KIPACStanford,et al.  Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments , 2013, 1307.5458.

[23]  Sahal Yacoob,et al.  Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at √s = 8 TeV with the ATLAS detector , 2015 .

[24]  R. Webb,et al.  Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment. , 2016, Physical review letters.

[25]  E. Braaten,et al.  Universal two-body physics in dark matter near an S -wave resonance , 2013, 1303.4682.

[26]  John F. Beacom,et al.  First observation of time variation in the solar-disk gamma-ray flux with Fermi , 2015, 1508.06276.

[27]  Todd Admas Search for long-lived neutral particles , 2006 .

[28]  L. Krauss,et al.  Constraints on Light Hidden Sector Gauge Bosons from Supernova Cooling , 2012, 1201.2683.

[29]  M. Pospelov,et al.  Probing a secluded U(1) at B factories , 2009, 0903.0363.

[30]  D. Walker,et al.  Perturbative Unitarity Constraints on Gauge Portals , 2014, 1412.5660.

[31]  K. Petraki,et al.  Self-interacting asymmetric dark matter coupled to a light massive dark photon , 2014, 1403.1077.

[32]  Brian Batell,et al.  Solar Gamma Rays Powered by Secluded Dark Matter , 2009, 0910.1567.

[33]  J. Edsjö,et al.  Neutrinos from WIMP Annihilations Using a Full Three-Flavor Monte Carlo , 2007 .

[34]  T. Slatyer,et al.  Model-independent indirect detection constraints on hidden sector dark matter , 2015, 1511.08787.

[35]  K. Griest,et al.  Supersymmetric dark matter , 1992 .

[36]  M. Papucci,et al.  Searches for long lived neutral particles , 2009, 0910.4160.

[37]  T. Slatyer Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results , 2015, 1506.03811.

[38]  J. Berger,et al.  750 GeV dark pion: Cousin of a dark G -parity odd WIMP , 2015, 1512.05779.

[39]  D. Gerdes,et al.  SEARCHING FOR DARK MATTER ANNIHILATION IN RECENTLY DISCOVERED MILKY WAY SATELLITES WITH FERMI-LAT , 2016, 1611.03184.

[40]  Zuowei Liu,et al.  The windows for kinetically mixed Z′-mediated dark matter and the galactic center gamma ray excess , 2014, 1405.7691.

[41]  John F. Beacom,et al.  Solar Atmospheric Neutrinos: A New Neutrino Floor for Dark Matter Searches , 2017, 1703.10280.

[42]  T. Tait,et al.  Hidden on-shell mediators for the Galactic Center $\gamma$-ray excess , 2014, 1404.6528.

[43]  M. Danninger Searches for Dark Matter with IceCube and DeepCore : New constraints on theories predicting dark matter particles , 2013 .

[44]  J. Pradler,et al.  Big Bang Nucleosynthesis as a Probe of New Physics , 2010, 1011.1054.

[45]  C. Quigg,et al.  Ultrahigh-Energy Neutrino Interactions , 1995, hep-ph/9512364.

[46]  M. Pospelov,et al.  Secluded WIMP Dark Matter , 2007, 0711.4866.

[47]  A. Zentner High-energy neutrinos from dark matter particle self-capture within the Sun , 2009, 0907.3448.

[48]  A. Herrero,et al.  Constraining Secluded Dark Matter models with the public data from the 79-string IceCube search for dark matter in the Sun , 2017, 1701.08863.

[49]  C. Kouvaris,et al.  The spectrum of darkonium in the Sun , 2016, 1607.00374.

[50]  C. Rott,et al.  Impact of the dark matter velocity distribution on capture rates in the Sun , 2013, 1312.0273.

[51]  D. Seckel,et al.  Cosmic asymmetry, neutrinos and the sun☆ , 1987 .

[52]  T. Gaisser,et al.  Limits on cold-dark-matter candidates from deep underground detectors. , 1986, Physical review. D, Particles and fields.

[53]  P. Schuster,et al.  Terrestrial and Solar Limits on Long-Lived Particles in a Dark Sector , 2009, 0910.1602.

[54]  F. Kahlhoefer,et al.  How to save the WIMP: global analysis of a dark matter model with two s-channel mediators , 2016, 1606.07609.

[55]  A. Fedynitch,et al.  Solar atmospheric neutrinos and the sensitivity floor for solar dark matter annihilation searches , 2017, 1703.07798.

[56]  P. Tanedo,et al.  Dark Photons from Captured Inelastic Dark Matter Annihilation: Charged Particle Signatures , 2017, 1701.03168.

[57]  J. Beacom,et al.  Guaranteed and prospective Galactic TeV neutrino sources , 2006, astro-ph/0607082.

[58]  Gino Tosti,et al.  FERMI LARGE AREA TELESCOPE OBSERVATIONS OF TWO GAMMA-RAY EMISSION COMPONENTS FROM THE QUIESCENT SUN , 2011 .

[59]  William H. Lee,et al.  Sensitivity of the high altitude water Cherenkov detector to sources of multi-TeV gamma rays , 2013, 1306.5800.

[60]  A. Baroncelli,et al.  A search for decays of heavy neutrinos , 1983 .

[61]  M. Kamionkowski,et al.  Unitarity limits on the mass and radius of dark-matter particles. , 1990, Physical review letters.

[62]  A Supersymmetry Primer , 1997, hep-ph/9709356.

[63]  A. Morozova,et al.  High-energy neutrino fluxes and flavor ratio in the Earth’s atmosphere , 2014, 1407.3591.

[64]  W. Press,et al.  Cold dark matter candidates and the solar neutrino problem , 1985 .

[65]  Nelson,et al.  Search for neutral metastable penetrating particles produced in the SLAC beam dump. , 1988, Physical review. D, Particles and fields.

[66]  D. Leith,et al.  Search for Long-Lived Particles in e+ e- Collisions. , 2015, Physical review letters.

[67]  Philip Schuster,et al.  High energy electron signals from dark matter annihilation in the Sun , 2009, 0910.1839.

[68]  N. Bell,et al.  Dark forces in the sky: signals from Z′ and the dark Higgs , 2016, 1605.09382.

[69]  B. Holdom Searching for ϵ charges and a new U(1) , 1986 .

[70]  Yu Gao,et al.  Indirect Signals from Solar Dark Matter Annihilation to Long-lived Right-handed Neutrinos , 2016, 1612.03110.

[71]  Alberto Guffanti,et al.  A facility to search for hidden particles at the CERN SPS: the SHiP physics case , 2015, Reports on progress in physics. Physical Society.

[72]  C. Rott,et al.  New Sensitivity to Solar WIMP Annihilation using Low-Energy Neutrinos , 2012, 1208.0827.

[73]  H. Dreiner,et al.  Supernova constraints on MeV dark sectors from $e^+e^-$ annihilations , 2013, 1310.3826.

[74]  N. Bell,et al.  Impact of mass generation for simplified dark matter models , 2016, 1610.03063.

[75]  S. H. Kim,et al.  Search for the dark photon and the dark Higgs boson at belle. , 2015, Physical review letters.

[76]  E. Braaten,et al.  Direct detection of dark matter in universal bound states , 2013, 1311.6386.

[77]  Yue Zhang,et al.  Yukawa bound states of a large number of fermions , 2014, 1411.1772.

[78]  Doojin Kim,et al.  Dark matter “transporting” mechanism explaining positron excesses , 2017, Journal of High Energy Physics.

[79]  Ranjan Laha Directional detection of dark matter in universal bound states , 2014, 1505.02772.

[80]  P. O. Hulth,et al.  Energy reconstruction methods in the IceCube neutrino telescope , 2013, 1311.4767.

[81]  Alan D. Martin,et al.  Review of Particle Physics , 2010 .

[82]  E. Figueroa-Feliciano,et al.  Complementarity of dark matter detectors in light of the neutrino background , 2014, 1408.3581.

[83]  Andrew Gould,et al.  Resonant Enhancements In WIMP Capture By The Earth , 1987 .

[84]  R. Sagdeev,et al.  Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station. , 2016, Physical review letters.

[85]  Yue Zhang,et al.  Stable bound states of asymmetric dark matter , 2014, 1407.4121.

[86]  T. Gaisser Cosmic rays and particle physics , 2016 .

[87]  S. Gninenko Constraints on sub-GeV hidden sector gauge bosons from a search for heavy neutrino decays , 2012, 1204.3583.

[88]  L. Okun LIMITS OF ELECTRODYNAMICS: PARAPHOTONS? , 1982 .

[89]  T. Slatyer,et al.  Multistep cascade annihilations of dark matter and the Galactic Center excess , 2015, 1503.01773.

[90]  A. Ibarra,et al.  Dark matter constraints from box-shaped gamma-ray features , 2012, 1205.0007.

[91]  P. O. Hulth,et al.  Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry , 2016, 1601.00653.

[92]  Jared Kaplan,et al.  Discovering New Light States at Neutrino Experiments , 2010, 1008.0636.

[93]  P. Tanedo,et al.  On-Shell Mediators and Top-Charm Dark Matter Models for the Fermi-LAT Galactic Center Excess , 2015, 1503.05919.

[94]  T. Tait,et al.  Bound states of weakly interacting dark matter , 2009 .

[95]  J. Chiang,et al.  Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data. , 2015, Physical review letters.

[96]  P. Schuster,et al.  New Fixed-Target Experiments to Search for Dark Gauge Forces , 2009, 0906.0580.

[97]  P. O. Hulth,et al.  Search for dark matter annihilations in the sun with the 79-string IceCube detector. , 2012, Physical review letters.

[98]  J. Martín-Albo,et al.  A novel way of constraining WIMPs annihilations in the Sun: MeV neutrinos , 2012, 1208.0834.

[99]  J. Edsjö,et al.  Neutrinos from cosmic ray interactions in the Sun , 2017, 1704.02892.

[100]  C. Rott,et al.  Enhanced sensitivity to dark matter self-annihilations in the Sun using neutrino spectral information , 2011, 1107.3182.

[101]  Yong-chao Zhang,et al.  Supernova bounds on the dark photon using its electromagnetic decay , 2014, 1410.0221.

[102]  A. Heijboer,et al.  Limits on Dark Matter Annihilation in the Sun using the ANTARES Neutrino Telescope , 2016, 1603.02228.

[103]  T. Bringmann,et al.  Gamma Ray Signals from Dark Matter: Concepts, Status and Prospects , 2012, 1208.5481.

[104]  C. Quigg,et al.  Neutrino interactions at ultrahigh energies , 1998, hep-ph/9807264.

[105]  P. Favali,et al.  Letter of intent for KM3NeT 2.0 , 2016, 1601.07459.

[106]  Yue Zhang Supernova cooling in a dark matter smog , 2014, 1404.7172.

[107]  D. Leith,et al.  Search for a Dark Photon ine+e-Collisions atBaBar , 2014, 1406.2980.

[108]  Jonathan L. Feng,et al.  Dark Sunshine: Detecting Dark Matter through Dark Photons from the Sun , 2016, 1602.01465.

[109]  S. Kim,et al.  Search for neutrinos from annihilation of captured low-mass dark matter particles in the sun by super-kamiokande. , 2015, Physical review letters.

[110]  L. Bergstrom,et al.  DarkSUSY: Computing Supersymmetric Dark Matter Properties Numerically , 2004 .

[111]  J. Zupan,et al.  Phenomenology of dark matter annihilation into a long-lived intermediate state , 2009, 0903.3116.

[112]  A. Gould Cosmological density of WIMPs from solar and terrestrial annihilations , 1992 .

[113]  Jonathan L. Feng,et al.  Dark photons from the center of the Earth: Smoking-gun signals of dark matter , 2015, 1509.07525.

[114]  J. March-Russell,et al.  WIMPonium and Boost Factors for Indirect Dark Matter Detection , 2008, 0812.0559.

[115]  B. Harling,et al.  Bound-state formation for thermal relic dark matter and unitarity , 2014, 1407.7874.

[116]  N. Padmanabhan,et al.  Detecting dark matter annihilation with CMB polarization: Signatures and experimental prospects , 2005, astro-ph/0503486.

[117]  Lian-tao Wang,et al.  Searching for the light dark gauge boson in GeV-scale experiments , 2009, 0904.1743.

[118]  John F. Beacom,et al.  TeV Solar Gamma Rays From Cosmic-Ray Interactions , 2016, 1612.02420.

[119]  G. Eigen Direct Searches for New Physics Particles at BABAR , 2015, 1503.02860.

[120]  Curtis N. James,et al.  A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope , 2016, 1602.07000.

[121]  R. Webb,et al.  Improved Limits on Scattering of Weakly Interacting Massive Particles from Reanalysis of 2013 LUX Data. , 2015, Physical review letters.