Stark positiver allosterischer Effekt bei der molekularen Erkennung von Dicarbonsäuren durch einen Cer(IV)‐bis[tetrakis(4‐pyridyl)porphyrinat]‐Doppeldecker

[1]  C Chothia,et al.  Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. , 1979, Journal of molecular biology.

[2]  F. Bruzzese,et al.  Allosteric properties of inosine monophosphate dehydrogenase revealed through the thermodynamics of binding of inosine 5'-monophosphate and mycophenolic acid. Temperature dependent heat capacity of binding as a signature of ligand-coupled conformational equilibria. , 1997, Biochemistry.

[3]  Y. Kobuke,et al.  Positive cooperativity in cation binding by novel polyether-bis(.beta.-diketone) hosts , 1992 .

[4]  H. Iwamura,et al.  Intramolecular Interaction between Hydroxyl Group and π-Electrons. IV. Rotational homers of Alcohols and Shift of νO–H Absorptions in Phenyl Substituted Alcohols , 1959 .

[5]  I. Tabushi,et al.  Artificial allosteric systems. 4. T/R Characterization of an artificial allosteric system by resonance Raman spectroscopy and oxygen or carbon monoxide affinity , 1986 .

[6]  Ben F. Luisi,et al.  Stereochemistry of cooperative mechanisms in hemoglobin , 1987 .

[7]  M. Platz The mechanism of intersystem crossing and ring closure of the triplet 1,8-naphthoquinodimethane biradical , 1980 .

[8]  D. Sibley,et al.  Zinc Allosterically Modulates Antagonist Binding to Cloned D1 and D2 Dopamine Receptors , 1997, Journal of neurochemistry.

[9]  R. Fairman,et al.  The DNA-binding domain of the hexameric arginine repressor. , 1995, Journal of molecular biology.

[10]  Taro Saito,et al.  Synthesis of amphiphilic porphyrins. , 1981 .

[11]  T. Traylor,et al.  Cooperativity in chemical model systems: Ligand-induced subunit dimerization , 1982 .

[12]  Takuzo Aida,et al.  Enantiomeric Resolution of Chiral Metallobis(porphyrin)s: Studies on Rotatability of Electronically Coupled Porphyrin Ligands , 1997 .

[13]  J. W. Buchler,et al.  Metal Complexes with Tetrapyrrole Ligands, LXXII Cerium(IV) Sandwich Complexes with Porphyrin Ligands Linked by Aliphatic and Quinone‐Containing Bridges , 1996 .

[14]  J. Changeux,et al.  Allosteric proteins and cellular control systems. , 1963, Journal of molecular biology.

[15]  H. Rüterjans,et al.  Metal Complexes with Tetrapyrrole Ligands, LXVI. Synthesis, Characterization, and Variable‐Temperature 1H‐ and 19F‐NMR Investigations of Cerium(IV) Double‐Deckers Derived from Monofunctionalized Tetraarylporphyrins , 1994 .

[16]  H. Schneider,et al.  A Synthetic Allosteric System with High Cooperativity between Polar and Hydrophobia Binding Sites , 1990 .

[17]  Jr. Julius Rebek,et al.  Binding forces, equilibria and rates: new models for enzymic catalysis , 1984 .

[18]  M. Perutz,et al.  Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. , 1979, Annual review of biochemistry.

[19]  Julius Rebek,et al.  Allosteric effects in organic chemistry: binding cooperativity in a model for subunit interactions , 1985 .

[20]  J. W. Buchler,et al.  Metal Complexes with Tetrapyrrole Ligands, LXX. Synthesis, Characterization, and Variable‐Temperature 1H‐NMR Investigations of Cerium(IV) and Zirconium(IV) Double‐Deckers Derived from 2,3,7,8,12,13,17,18‐Octaethyl‐5‐methylporphyrin , 1996 .

[21]  S. Shinkai,et al.  Highly Selective and Sensitive “Sugar Tweezer” Designed from a Boronic-Acid-Appended μ-Oxobis[porphinatoiron(III)] , 1996 .

[22]  J. W. Buchler,et al.  Metal Complexes with Tetrapyrrole Ligands. 67. Synthesis and Spectroscopic Properties of Water-Soluble Cerium Bisporphyrinate Double-Decker Ions , 1994 .

[23]  Kentaro Tashiro,et al.  Enantiomerentrennung bei chiralen Metallobis(porphyrinen): Untersuchungen zur Rotationsfähigkeit elektronisch gekoppelter Porphyrinliganden , 1997 .

[24]  M. Witmer,et al.  Cooperativity and binding in the mechanism of cytosolic phospholipase A2. , 1995, Biochemistry.

[25]  A. Sobieszek,et al.  Smooth muscle myosin light chain kinase, supramolecular organization, modulation of activity, and related conformational changes. , 1997, Biophysical journal.

[26]  Y. Aoyama,et al.  Complexation of hydrophobic sugars and nucleosides in water with tetrasulfonate derivatives of resorcinol cyclic tetramer having a polyhydroxy aromatic cavity: importance of guest-host CH-.pi. interaction , 1992 .

[27]  W U Primrose,et al.  1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine as a substrate of cytochrome P450 2D6: allosteric effects of NADPH-cytochrome P450 reductase. , 1997, Biochemistry.

[28]  Rjm Roeland Nolte,et al.  A molecular clip with allosteric binding properties , 1991 .