Bounds on the Chvátal Rank of Polytopes in the 0/1-Cube*

Gomory’s and Chvátal’s cutting-plane procedure proves recursively the validity of linear inequalities for the integer hull of a given polyhedron. The Chvátal rank of the polyhedron is the number of rounds needed to obtain all valid inequalities. It is well known that the Chvátal rank can be arbitrarily large, even if the polyhedron is bounded, if it is 2-dimensional, and if its integer hull is a 0/1-polytope.We show that the Chvátal rank of polyhedra featured in common relaxations of many combinatorial optimization problems is rather small; in fact, we prove that the rank of every polytope contained in the n-dimensional 0/1-cube is at most n2 (1+log n). Moreover, we also demonstrate that the rank of any polytope in the 0/1-cube whose integer hull is defined by inequalities with constant coefficients is O(n).Finally, we provide a family of polytopes contained in the 0/1-cube whose Chvátal rank is at least (1 + ε) n, for some ε > 0.

[1]  Pavel Pudlák,et al.  Lower bounds for resolution and cutting plane proofs and monotone computations , 1997, Journal of Symbolic Logic.

[2]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .

[3]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[4]  Mark Evan Hartmann,et al.  Cutting planes and the complexity of the integer hull , 1989 .

[5]  Sylvia C. Boyd,et al.  Optimizing over the subtour polytope of the travelling salesman problem , 1990, Math. Program..

[6]  Leslie E. Trotter,et al.  On stable set polyhedra for K1, 3-free graphs , 1981, J. Comb. Theory, Ser. B.

[7]  William J. Cook,et al.  On the complexity of cutting-plane proofs , 1987, Discret. Appl. Math..

[8]  Günter M. Ziegler,et al.  Extremal Properties of 0/1-Polytopes , 1997, Discret. Comput. Geom..

[9]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[10]  Denis Naddef,et al.  The hirsch conjecture is true for (0, 1)-polytopes , 1989, Mathematical programming.

[11]  Alexander Schrijver,et al.  On Cutting Planes , 1980 .

[12]  Friedrich Eisenbrand,et al.  Cutting Planes and the Elementary Closure in Fixed Dimension , 2001, Math. Oper. Res..

[13]  Matteo Fischetti,et al.  Three Facet-Lifting Theorems for the Asymmetric Traveling Salesman Polytope , 1992, IPCO.

[14]  Andreas S. Schulz,et al.  0/1-Integer Programming: Optimization and Augmentation are Equivalent , 1995, ESA.

[15]  Noga Alon,et al.  Anti-Hadamard Matrices, Coin Weighing, Threshold Gates, and Indecomposable Hypergraphs , 1997, J. Comb. Theory, Ser. A.

[16]  Friedrich Eisenbrand,et al.  Bounds on the Chvátal Rank of Polytopes in the 0/1-Cube , 1999, IPCO.

[17]  William J. Cook,et al.  On cutting-plane proofs in combinatorial optimization , 1989 .

[18]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[19]  Ran Raz,et al.  Lower bounds for cutting planes proofs with small coefficients , 1995, Symposium on the Theory of Computing.

[20]  William R. Pulleyblank,et al.  Clique Tree Inequalities and the Symmetric Travelling Salesman Problem , 1986, Math. Oper. Res..

[21]  William J. Cook,et al.  On the Matrix-Cut Rank of Polyhedra , 2001, Math. Oper. Res..

[22]  W. R. Pulleyblank,et al.  Polyhedral Combinatorics , 1989, ISMP.

[23]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..

[24]  Friedrich Eisenbrand,et al.  NOTE – On the Membership Problem for the Elementary Closure of a Polyhedron , 1999, Comb..

[25]  Egon Balas,et al.  Gomory cuts revisited , 1996, Oper. Res. Lett..

[26]  Maurice Queyranne,et al.  Ladders for Travelling Salesmen , 1995, SIAM J. Optim..

[27]  Günter Rote,et al.  Upper Bounds on the Maximal Number of Facets of 0/1-Polytopes , 2000, Eur. J. Comb..

[28]  V. Chvátal Flip-Flops in Hypohamiltonian Graphs , 1973, Canadian mathematical bulletin.

[29]  Egon Balas,et al.  Facets of the three-index assignment polytope , 1989, Discret. Appl. Math..