DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage

Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome. It is also enriched in segmental duplications, ranking third in density among the autosomes. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome.

David C. Schwartz | Jane Loveland | Eric S. Lander | Robert Nicol | Jonathan M. Mudge | Jennifer Harrow | David J. Adams | Toby Bloom | Ted Sharpe | Varsha K. Khodiyar | Sinead B. O'Leary | Michael C. Zody | Ken Dewar | April Cook | Allan Bradley | David B. Jaffe | Evan Mauceli | Bruce W. Birren | Steven A. McCarroll | Sante Gnerre | Christina A. Cuomo | Jane Rogers | Annie Lui | David DeCaprio | Chad Nusbaum | Kazutoyo Osoegawa | Nabil Hafez | Tim Hubbard | Charles Steward | Kurt LaButti | Christine Nicholson | Laurens Wilming | Lucy Matthews | Jean L. Chang | Jessica Lehoczky | Pawel Stankiewicz | Sean Humphray | Charles A. Whittaker | Gavin Laird | Weimin Bi | David Swarbreck | Mark L. Borowsky | Matt Jones | E. Mauceli | B. Birren | C. Nusbaum | E. Lander | J. Harrow | S. Searle | C. Steward | T. Hubbard | Ted Sharpe | D. Jaffe | P. Stankiewicz | J. Lupski | L. Matthews | D. Grafham | S. Mccarroll | J. Rogers | M. Zody | K. Dewar | T. Bloom | R. Nicol | S. Humphray | D. Schwartz | K. Osoegawa | D. Swarbreck | J. Gilbert | S. Gnerre | Jonathan Butler | V. Khodiyar | A. Bradley | R. Grocock | D. Adams | J. Lehoczky | M. Garber | L. Wilming | Michael Kamal | C. Shaw-Smith | Steve Goldstein | J. Loveland | P. Jong | N. Hafez | Xiaohong Liu | Tashi Lokyitsang | Pendexter Macdonald | A. Zimmer | John E. Major | Xiaoping Yang | Michael G. Fitzgerald | S. Young | G. Laird | A. Abouelleil | C. Cuomo | Chao-Kung Chen | W. Bi | Matt Jones | E. Hart | M. Borowsky | K. LaButti | C. Nicholson | A. Cook | C. A. Whittaker | Cindy Nguyen | R. Gibson | James R. Lupski | James Gilbert | Pieter J. de Jong | Michael FitzGerald | Amr Abouelleil | Russell Grocock | Manuel Garber | Steven M. Searle | Sarah K. Young | Nicole R. Allen | Boris E. Bugalter | Jonathan Butler | Chao-Kung Chen | Benjamin Corum | Richard Gibson | Steven Goldstein | Darren V. Grafham | Daniel S. Hagopian | Elizabeth Hart | Catherine Hosage Norman | Michael Kamal | Xiaohong Liu | Tashi Lokyitsang | Pendexter Macdonald | Atanas H. Mihalev | Jonathan Mudge | Cindy Nguyen | Sinéad B. O'Leary | Charles Shaw-Smith | Vijay Venkataraman | Xiaoping Yang | Andrew R. Zimmer | Boris Bugalter | D. DeCaprio | Annie Lui | Vijaya Venkataraman | N. R. Allen | Benjamin Corum | C. H. Norman | Toby Bloom | Manuel Garber | Amr Abouelleil | Sarah K. Young

[1]  Christina A. Cuomo,et al.  The breakpoint region of the most common isochromosome, i(17q), in human neoplasia is characterized by a complex genomic architecture with large, palindromic, low-copy repeats. , 2004, American journal of human genetics.

[2]  I. Dunham,et al.  DNA sequence and analysis of human chromosome 9 , 2003, Nature.

[3]  A. Taylor,et al.  The DNA sequence and comparative analysis of human chromosome 10 , 2004, Nature.

[4]  Sinead B. O'Leary,et al.  DNA sequence and analysis of human chromosome 18 , 2005, Nature.

[5]  M. Adams,et al.  Recent Segmental Duplications in the Human Genome , 2002, Science.

[6]  Tim Hubbard Finishing the euchromatic sequence of the human genome , 2004 .

[7]  D R Bentley,et al.  The DNA sequence and comparative analysis of human chromosome 20 , 2004, Nature.

[8]  J. Yunis,et al.  The origin of man: a chromosomal pictorial legacy. , 1982, Science.

[9]  J. Bonfield,et al.  Finishing the euchromatic sequence of the human genome , 2004, Nature.

[10]  B. Birren,et al.  Structure and evolution of the Smith-Magenis syndrome repeat gene clusters, SMS-REPs. , 2002, Genome research.

[11]  Stephen C. J. Parker,et al.  DNA sequence and analysis of human chromosome 8 , 2006, Nature.

[12]  Paul Richardson,et al.  The DNA sequence and comparative analysis of human chromosome 5 , 2004, Nature.

[13]  L. Shaffer,et al.  Molecular mechanism for duplication 17p11.2— the homologous recombination reciprocal of the Smith-Magenis microdeletion , 2000, Nature Genetics.

[14]  M. Seldin,et al.  Human/mouse homology relationships. , 1996, Genomics.

[15]  Bin Ma,et al.  PatternHunter: faster and more sensitive homology search , 2002, Bioinform..

[16]  Aravinda Chakravarti,et al.  DNA duplication associated with Charcot-Marie-Tooth disease type 1A , 1991, Cell.

[17]  Peer Bork,et al.  Comparative architectures of mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across different lineages. , 2005, Genome research.

[18]  P. Stankiewicz,et al.  Serial segmental duplications during primate evolution result in complex human genome architecture. , 2004, Genome research.

[19]  B. Trask,et al.  Segmental duplications: organization and impact within the current human genome project assembly. , 2001, Genome research.

[20]  P. Stankiewicz,et al.  The evolutionary chromosome translocation 4;19 in Gorilla gorilla is associated with microduplication of the chromosome fragment syntenic to sequences surrounding the human proximal CMT1A-REP. , 2001, Genome research.

[21]  Sinead B. O'Leary,et al.  Analysis of the DNA sequence and duplication history of human chromosome 15 , 2006, Nature.

[22]  C. Disteche,et al.  DNA deletion associated with hereditary neuropathy with liability to pressure palsies , 1993, Cell.

[23]  A. C. Chinault,et al.  Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome , 1997, Nature Genetics.

[24]  E. Eichler,et al.  Recent duplication, domain accretion and the dynamic mutation of the human genome. , 2001, Trends in genetics : TIG.

[25]  D. Haber,et al.  The Tre2 (USP6) oncogene is a hominoid-specific gene , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  C. Ponting,et al.  Finishing the euchromatic sequence of the human genome , 2004 .

[27]  B. Birren,et al.  The 1.4-Mb CMT1A duplication/HNPP deletion genomic region reveals unique genome architectural features and provides insights into the recent evolution of new genes. , 2001, Genome research.

[28]  Terrence S. Furey,et al.  Generation and annotation of the DNA sequences of human chromosomes 2 and 4 , 2005, Nature.

[29]  Colin N. Dewey,et al.  Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution , 2004, Nature.

[30]  Terrence S. Furey,et al.  The DNA sequence and biology of human chromosome 19 , 2004, Nature.

[31]  H. Stefánsson,et al.  A common inversion under selection in Europeans , 2005, Nature Genetics.